Abstract: In the rapidly evolving landscape of integrated circuit technology, as process nodes continue to shrink to the nanometer level, the demands placed on interconnect materials and their processing technology are becoming increasingly stringent. Cobalt (Co), an emerging metal material, is gaining traction as a preferred choice forcopper (Cu) interconnect barrier layers and potential interconnect materials due to its exceptio-nal thermal stability, void-free filling ability, and strong adhesion to Cu wiring. However, this heightened interest in cobalt is accompanied by a high demand for surface smoothness and cleanliness, driving extensive research and innovation in chemomechanical polishing (CMP) processes and post CMP cleaning process. This paper aims to review the current application status of Co as Cu interconnect barrier and new interconnect material in integrated circuits, respectively. The impact of various slurry components on the material removal rate, galvanic corrosion, and removal selection ratio in CMP process are analyzed. Furthermore, the crucial role of cleaning solutions is discussed in post CMP cleaning process. Through precise chemical formula design, defects such as nanoparticles and organic residues can be effectively removed to ensure that the Co surface achieves high levels of cleanliness and flatness. Additionally, the review identifies the limitations of current research and offers forward-looking insights into the development of more environmentally friendly and efficient Co CMP and post-CMP cleaning technologies.
1 Steigerwald J M, Murarka S P, Gutmann R J, et al. Materials Chemistryand Physics, 1995, 41, 217. 2 Latt K M, Sher-Yi C, Osipowicz T, et al. Mater. Sci, 2001, 36, 5705. 3 Krishnan M, Lofaro M F. Advances in Chemical Mechanical Planarization (CMP), 2016, 27, 46. 4 Simpson D E, Johnson C A, Roy D. Journal of the Electrochemical Society, 2018, 166, D3142. 5 Liu P, Bae S, Hong S, et al. Precision Engineering, 2022, 73, 195. 6 Xiao Y, Pan G, Tian Q, et al. ECS Journal of Solid State Science and Technology, 2018, 7, 608. 7 Kaloyeros A E, Pan Y, Goff J, et al. ECS Journal of Solid State Science and Technology, 2019, 8, 119. 8 Jiang L, He Y, Li Y, et al. Microelectronic Engineering, 2014, 122, 82. 9 Harada K, Kusano T, Shibata T, et al. Japanese Journal of Applied Physics, 2018, 57, 7. 10 Lee H, Lee D, Jeong H. International Journal of Precision Engineering and Manufacturing, 2016, 17, 525. 11 Zhou J, Niu X, Yang C, et al. Applied Surface Science, 2020, 529, 147109. 12 Hu L J, Liu J J, Pan G F, et. al. Materials Reports, 2022, 36(4), 189 (in Chinese). 胡连军, 刘建军, 潘国峰, 等. 材料导报, 2022, 36(4), 189. 13 Lu H S, Zeng X, Wang J X, et al. Journal of the Electrochemical Society, 2012, 159, C383. 14 Hu L, Pan G, Xu Y, et al. ECS Journal of Solid State Science and Technology, 2020, 9 , 034007. 15 Chen Y, Jiang L, Qian L. Tribology International, 2024, 194, 109434. 16 Deng H, Zhong M, Xu W. Tribology International, 2023, 178, 108047. 17 Rui X, Yongsheng W, Yipu W, et al. Transactions on Electrical and Electronic Materials, 2020, 21, 580. 18 Cheong H W, Lee W H, Kim J W, et al. Plasma Sources Science and Technology, 2014, 23, 065051. 19 Li W, Tan B, Zhang S, et al. Applied Surface Science, 2022, 602, 154165. 20 Sagi K V, Teugels L G, Van Der Veen M H, et al. ECS Journal of Solid State Science and Technology, 2017, 6, P276. 21 Ji J B, Zhang N N, Tan B M, et al. Lubrication Engineering, 2023, 48(7), 190 (in Chinese). 纪金伯, 张男男, 檀柏梅, 等. 润滑与密封, 2023, 48(7), 190. 22 Jiang L, Lan Y, He Y, et al. Applied Surface Science, 2014, 288, 265. 23 Chivot J, Mendoza L, Mansour C, et al. Corrosion Science, 2008, 50, 62. 24 Nishizawa H, Nojo H, Isobe A. Japanese Journal of Applied Physics, 2010, 49, 05fc03. 25 Peethala B C, Amanapu H P, Lagudu U R K, et al. Journal of the Electrochemical Society, 2012, 159, H582. 26 Zhou J, Wang J, Niu X, et al. ECS Journal of Solid State Science and Technology, 2019, 8, 99. 27 Kumar R, Hazarika J, Venkatesh Rajaraman P. Materials Today:Proceedings, 2022, 57, 1913. 28 Xu A, Liu W, Zhao G, et al. ECS Journal of Solid State Science and Technology, 2020, 9(4) , 044007. 29 Hazarika J, Rajaraman P V. ECS Journal of Solid State Science and Technology, 2020, 9 , 024008. 30 Zhang L, Wang T, Lu X. Journal of Materials Science, 2020, 55, 8992. 31 Liu F, Wang S, Wang C, et al. ECS Journal of Solid State Science and Technology, 2019, 8, 3201. 32 Xu A, Feng D, Wang W, et al. ECS Journal of Solid State Science and Technology, 2020, 9, 084001. 33 Zhang X, Pan G, Hu L, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 605, 125392. 34 Yang X, Zhang B, Yang Z. Materials Chemistry and Physics, 2022, 278, 125630. 35 Zhang W, Liu Y, Wang C, et al. ECS Journal of Solid State Science and Technology, 2017, 6, 786. 36 Hu L, Pan G, Zhang X, et al. ECS Journal of Solid State Science and Technology, 2019, 8, P437. 37 Hu L, Pan G, Wang H, et al. Materials Chemistry and Physics, 2020, 256, 123672. 38 Li H, Zhang B, Li Y, et al. Materials Science in Semiconductor Processing, 2022, 146, 106691. 39 Jiang J, Kang J, Cao W, et al. Nano Letters, 2017, 17, 1482. 40 Krishtab M, Stassen I, Stassin T, et al. Nature Communications, 2019, 10, 3729. 41 Feng J, Gong X, Lou X, et al. ACS Applied Materials & Interfaces, 2017, 9, 10914. 42 Krishnan M, Nalaskowski J W, Cook L M. Chemical Reviews, 2010, 110, 178. 43 Wu C, Han J H, Shi X, et al. ECS Meeting Abstracts, 2017, MA2017-01, 1258. 44 Cheng Y, Wang S, Wang C, et al. ECS Journal of Solid State Science and Technology, 2020, 9, 044014. 45 Ranaweera C K, Baradanahalli N K, Popuri R, et al. ECS Journal of Solid State Science and Technology, 2018, 8, 3001. 46 Popuri R, Sagi K V, Alety S R, et al. ECS Journal of Solid State Science and Technology, 2017, 6, 594. 47 Tian Q, Wang S, Xiao Y, et al. ECS Journal of Solid State Science and Technology, 2018, 7, 416. 48 Ye B, Pan G, Yang X, et al. Electrochimica Acta, 2023, 468, 143184. 49 Lei S, Wang S, Li H, et al. ECS Journal of Solid State Science and Technology, 2021, 10, 074002. 50 Popuri R, Amanapu H, Ranaweera C K, et al. ECS Journal of Solid State Science and Technology, 2017, 6, P845. 51 Cao J, Liu Q, Xia R, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 660, 130848. 52 Wang H, Hu L, Cao G, et al. ACS Applied Materials & Interfaces, 2022, 14, 28321. 53 Zhang L, Wang S, Wang T, et al. ECS Journal of Solid State Science and Technology, 2023, 12, 074007. 54 Zhang L, Wang T, Lu X. The International Journal of Advanced Manufacturing Technology, 2023, 125, 4549. 55 Hong J, Niu X, Liu Y, et al. Applied Surface Science, 2016, 378, 239. 56 Doinikov A A. Physics of Fluids, 2002, 14, 1420. 57 Seo J, Vegi S S R K H, Ranaweera C K, et al. ECS Journal of Solid State Science and Technology, 2018, 8, P3009. 58 Seo J, Vegi S S R K H, Babu S V. ECS Journal of Solid State Science and Technology, 2019, 8, 379. 59 Ji J, Tan B, Zhang N, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2024, 683, 133052. 60 Sun X, Zhang S, Liu M, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 610, 125932. 61 Cui H, Ma T, Tan B, et al. ECS Journal of Solid State Science and Technology, 2022, 11, 034005. 62 Tanwar K, Canaperi D, Lofaro M, et al. Journal of the Electrochemical Society, 2013, 160, D3247. 63 Cheng Y, Wang S, Li H, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 627, 127189. 64 Zhang L, Wang T, Nan J, et al. ACS Applied Electronic Materials, 2023, 5, 6884. 65 Tian S, Tan B, Gao B, et al. ECS Journal of Solid State Science and Technology, 2019, 8, 545. 66 Zhang L, Lu X, Busnaina A A. Materials Chemistry and Physics, 2022, 275, 125199.