Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 24090050-10    https://doi.org/10.11896/cldb.24090050
  金属与金属基复合材料 |
钴化学机械抛光中抛光液及清洗剂的研究进展
张力飞, 路新春*, 张佳磊, 赵德文
清华大学机械系,高端装备界面科学与技术全国重点实验室,北京 100084
Research Progress of Polishing Slurry and Cleaning Solution in Chemomechanical Polishing Process for Cobalt
ZHANG Lifei, LU Xinchun*, ZHANG Jialei, ZHAO Dewen
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
下载:  全 文 ( PDF ) ( 37975KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在当今集成电路技术飞速发展的时代背景下,随着工艺节点不断缩小至纳米级,互连结构及其工艺技术的挑战愈发严峻。钴(Co)作为一种新兴的金属材料,凭借其出色的热稳定性、优异的空隙填充能力和对铜(Cu)布线的强附着力,正逐步成为Cu互连阻挡层及潜在互连布线的热门选择。然而,随之而来的是对材料表面平整度与清洁度的极高要求,这直接促使了化学机械抛光(Chemomechanical polishing,CMP)工艺及其后清洗技术的发展与创新。本综述旨在回顾Co作为Cu互连阻挡层和新型互连布线在集成电路中的应用现状,深入分析CMP工艺中抛光液的不同组分对Co去除速率、电偶腐蚀和去除速率选择比等方面的影响。同时,探讨了在CMP清洗过程中清洗剂的关键作用,通过精确设计的化学配方,有效剥离纳米颗粒、有机残留等污染物,确保Co表面达到高度清洁与平整度标准。此外,还敏锐地指出了当前研究中的局限,并对Co的CMP及后清洗技术在追求更环保、更高效方向进行了前瞻性展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张力飞
路新春
张佳磊
赵德文
关键词:  化学机械抛光    阻挡层  互连层  抛光液  清洗剂    
Abstract: In the rapidly evolving landscape of integrated circuit technology, as process nodes continue to shrink to the nanometer level, the demands placed on interconnect materials and their processing technology are becoming increasingly stringent. Cobalt (Co), an emerging metal material, is gaining traction as a preferred choice forcopper (Cu) interconnect barrier layers and potential interconnect materials due to its exceptio-nal thermal stability, void-free filling ability, and strong adhesion to Cu wiring. However, this heightened interest in cobalt is accompanied by a high demand for surface smoothness and cleanliness, driving extensive research and innovation in chemomechanical polishing (CMP) processes and post CMP cleaning process. This paper aims to review the current application status of Co as Cu interconnect barrier and new interconnect material in integrated circuits, respectively. The impact of various slurry components on the material removal rate, galvanic corrosion, and removal selection ratio in CMP process are analyzed. Furthermore, the crucial role of cleaning solutions is discussed in post CMP cleaning process. Through precise chemical formula design, defects such as nanoparticles and organic residues can be effectively removed to ensure that the Co surface achieves high levels of cleanliness and flatness. Additionally, the review identifies the limitations of current research and offers forward-looking insights into the development of more environmentally friendly and efficient Co CMP and post-CMP cleaning technologies.
Key words:  chemomechanical polishing    cobalt    barrier layer    interconnection wiring    polishing slurry    cleaning solution
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  TN305.2  
  TQ421.4  
基金资助: 国家自然科学基金(51991374)
通讯作者:  *路新春,博士,清华大学机械工程系教授、博士研究生导师。目前主要从事微纳制造、表面界面微/纳摩擦学理论和应用等方面的研究工作。xclu@tsinghua.edu.cn   
作者简介:  张力飞,博士,现为清华大学机械工程系助理研究员,在路新春教授的指导下进行研究。目前主要研究领域涵盖微纳制造摩擦学、纳米及原子级精度表面制造、先进制程集成电路化学机械抛光及后清洗等。
引用本文:    
张力飞, 路新春, 张佳磊, 赵德文. 钴化学机械抛光中抛光液及清洗剂的研究进展[J]. 材料导报, 2025, 39(6): 24090050-10.
ZHANG Lifei, LU Xinchun, ZHANG Jialei, ZHAO Dewen. Research Progress of Polishing Slurry and Cleaning Solution in Chemomechanical Polishing Process for Cobalt. Materials Reports, 2025, 39(6): 24090050-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090050  或          https://www.mater-rep.com/CN/Y2025/V39/I6/24090050
1 Steigerwald J M, Murarka S P, Gutmann R J, et al. Materials Chemistryand Physics, 1995, 41, 217.
2 Latt K M, Sher-Yi C, Osipowicz T, et al. Mater. Sci, 2001, 36, 5705.
3 Krishnan M, Lofaro M F. Advances in Chemical Mechanical Planarization (CMP), 2016, 27, 46.
4 Simpson D E, Johnson C A, Roy D. Journal of the Electrochemical Society, 2018, 166, D3142.
5 Liu P, Bae S, Hong S, et al. Precision Engineering, 2022, 73, 195.
6 Xiao Y, Pan G, Tian Q, et al. ECS Journal of Solid State Science and Technology, 2018, 7, 608.
7 Kaloyeros A E, Pan Y, Goff J, et al. ECS Journal of Solid State Science and Technology, 2019, 8, 119.
8 Jiang L, He Y, Li Y, et al. Microelectronic Engineering, 2014, 122, 82.
9 Harada K, Kusano T, Shibata T, et al. Japanese Journal of Applied Physics, 2018, 57, 7.
10 Lee H, Lee D, Jeong H. International Journal of Precision Engineering and Manufacturing, 2016, 17, 525.
11 Zhou J, Niu X, Yang C, et al. Applied Surface Science, 2020, 529, 147109.
12 Hu L J, Liu J J, Pan G F, et. al. Materials Reports, 2022, 36(4), 189 (in Chinese).
胡连军, 刘建军, 潘国峰, 等. 材料导报, 2022, 36(4), 189.
13 Lu H S, Zeng X, Wang J X, et al. Journal of the Electrochemical Society, 2012, 159, C383.
14 Hu L, Pan G, Xu Y, et al. ECS Journal of Solid State Science and Technology, 2020, 9 , 034007.
15 Chen Y, Jiang L, Qian L. Tribology International, 2024, 194, 109434.
16 Deng H, Zhong M, Xu W. Tribology International, 2023, 178, 108047.
17 Rui X, Yongsheng W, Yipu W, et al. Transactions on Electrical and Electronic Materials, 2020, 21, 580.
18 Cheong H W, Lee W H, Kim J W, et al. Plasma Sources Science and Technology, 2014, 23, 065051.
19 Li W, Tan B, Zhang S, et al. Applied Surface Science, 2022, 602, 154165.
20 Sagi K V, Teugels L G, Van Der Veen M H, et al. ECS Journal of Solid State Science and Technology, 2017, 6, P276.
21 Ji J B, Zhang N N, Tan B M, et al. Lubrication Engineering, 2023, 48(7), 190 (in Chinese).
纪金伯, 张男男, 檀柏梅, 等. 润滑与密封, 2023, 48(7), 190.
22 Jiang L, Lan Y, He Y, et al. Applied Surface Science, 2014, 288, 265.
23 Chivot J, Mendoza L, Mansour C, et al. Corrosion Science, 2008, 50, 62.
24 Nishizawa H, Nojo H, Isobe A. Japanese Journal of Applied Physics, 2010, 49, 05fc03.
25 Peethala B C, Amanapu H P, Lagudu U R K, et al. Journal of the Electrochemical Society, 2012, 159, H582.
26 Zhou J, Wang J, Niu X, et al. ECS Journal of Solid State Science and Technology, 2019, 8, 99.
27 Kumar R, Hazarika J, Venkatesh Rajaraman P. Materials Today:Proceedings, 2022, 57, 1913.
28 Xu A, Liu W, Zhao G, et al. ECS Journal of Solid State Science and Technology, 2020, 9(4) , 044007.
29 Hazarika J, Rajaraman P V. ECS Journal of Solid State Science and Technology, 2020, 9 , 024008.
30 Zhang L, Wang T, Lu X. Journal of Materials Science, 2020, 55, 8992.
31 Liu F, Wang S, Wang C, et al. ECS Journal of Solid State Science and Technology, 2019, 8, 3201.
32 Xu A, Feng D, Wang W, et al. ECS Journal of Solid State Science and Technology, 2020, 9, 084001.
33 Zhang X, Pan G, Hu L, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 605, 125392.
34 Yang X, Zhang B, Yang Z. Materials Chemistry and Physics, 2022, 278, 125630.
35 Zhang W, Liu Y, Wang C, et al. ECS Journal of Solid State Science and Technology, 2017, 6, 786.
36 Hu L, Pan G, Zhang X, et al. ECS Journal of Solid State Science and Technology, 2019, 8, P437.
37 Hu L, Pan G, Wang H, et al. Materials Chemistry and Physics, 2020, 256, 123672.
38 Li H, Zhang B, Li Y, et al. Materials Science in Semiconductor Processing, 2022, 146, 106691.
39 Jiang J, Kang J, Cao W, et al. Nano Letters, 2017, 17, 1482.
40 Krishtab M, Stassen I, Stassin T, et al. Nature Communications, 2019, 10, 3729.
41 Feng J, Gong X, Lou X, et al. ACS Applied Materials & Interfaces, 2017, 9, 10914.
42 Krishnan M, Nalaskowski J W, Cook L M. Chemical Reviews, 2010, 110, 178.
43 Wu C, Han J H, Shi X, et al. ECS Meeting Abstracts, 2017, MA2017-01, 1258.
44 Cheng Y, Wang S, Wang C, et al. ECS Journal of Solid State Science and Technology, 2020, 9, 044014.
45 Ranaweera C K, Baradanahalli N K, Popuri R, et al. ECS Journal of Solid State Science and Technology, 2018, 8, 3001.
46 Popuri R, Sagi K V, Alety S R, et al. ECS Journal of Solid State Science and Technology, 2017, 6, 594.
47 Tian Q, Wang S, Xiao Y, et al. ECS Journal of Solid State Science and Technology, 2018, 7, 416.
48 Ye B, Pan G, Yang X, et al. Electrochimica Acta, 2023, 468, 143184.
49 Lei S, Wang S, Li H, et al. ECS Journal of Solid State Science and Technology, 2021, 10, 074002.
50 Popuri R, Amanapu H, Ranaweera C K, et al. ECS Journal of Solid State Science and Technology, 2017, 6, P845.
51 Cao J, Liu Q, Xia R, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 660, 130848.
52 Wang H, Hu L, Cao G, et al. ACS Applied Materials & Interfaces, 2022, 14, 28321.
53 Zhang L, Wang S, Wang T, et al. ECS Journal of Solid State Science and Technology, 2023, 12, 074007.
54 Zhang L, Wang T, Lu X. The International Journal of Advanced Manufacturing Technology, 2023, 125, 4549.
55 Hong J, Niu X, Liu Y, et al. Applied Surface Science, 2016, 378, 239.
56 Doinikov A A. Physics of Fluids, 2002, 14, 1420.
57 Seo J, Vegi S S R K H, Ranaweera C K, et al. ECS Journal of Solid State Science and Technology, 2018, 8, P3009.
58 Seo J, Vegi S S R K H, Babu S V. ECS Journal of Solid State Science and Technology, 2019, 8, 379.
59 Ji J, Tan B, Zhang N, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2024, 683, 133052.
60 Sun X, Zhang S, Liu M, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 610, 125932.
61 Cui H, Ma T, Tan B, et al. ECS Journal of Solid State Science and Technology, 2022, 11, 034005.
62 Tanwar K, Canaperi D, Lofaro M, et al. Journal of the Electrochemical Society, 2013, 160, D3247.
63 Cheng Y, Wang S, Li H, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 627, 127189.
64 Zhang L, Wang T, Nan J, et al. ACS Applied Electronic Materials, 2023, 5, 6884.
65 Tian S, Tan B, Gao B, et al. ECS Journal of Solid State Science and Technology, 2019, 8, 545.
66 Zhang L, Lu X, Busnaina A A. Materials Chemistry and Physics, 2022, 275, 125199.
[1] 尚文旭, 俞文涛, 何义, 马彦义, 谈鹏. 锌电池中钴基正极材料的应用现状与挑战[J]. 材料导报, 2024, 38(6): 23040024-10.
[2] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[3] 刘悦卿, 赵江涛, 王凤青, 刘雷, 丁勇, 孙颖莉, 闫阿儒. 铝镍钴永磁材料的研究进展[J]. 材料导报, 2024, 38(23): 23080088-10.
[4] 左彤, 唐显, 李鑫, 何虎, 牛厂磊, 隋解和, 郭逢凯. 方钴矿热电器件性能衰减影响因素研究[J]. 材料导报, 2024, 38(21): 23050211-8.
[5] 李雯浩宇, 高宝红, 霍金向, 贺斌, 梁斌, 刘鸣瑜. IC互连金属及其阻挡层化学机械抛光的研究进展[J]. 材料导报, 2024, 38(16): 23030074-8.
[6] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[7] 孙加营, 方杨飞, 张一波, 刘秋文, 刘凯杰, 杨向光. CuO修饰CeO2纳米复合磨料的制备及抛光性能[J]. 材料导报, 2023, 37(3): 22120092-5.
[8] 何思瑶, 魏闯, 康鑫, 李素平. 锂辉石含量对煅烧钴酸锂正极材料用匣钵材料性能的影响[J]. 材料导报, 2023, 37(22): 22040351-6.
[9] 董波, 田庆华, 许志鹏, 李栋, 王青骜, 郭学益. 新能源战略金属镍钴锂资源清洁提取研究进展[J]. 材料导报, 2023, 37(22): 22090071-15.
[10] 颜冬仙, 樊新. rGO/NiCo复合材料制备及电化学性能研究[J]. 材料导报, 2023, 37(18): 22030311-6.
[11] 任荣浩, 孙平, 王永光, 丁钊, 赵栋, 俞泽新. 壳聚糖在铝低压力化学机械抛光中的钝化作用及抛光行为研究[J]. 材料导报, 2023, 37(16): 22030222-6.
[12] 骆传跃, 郑光明, 盖少磊, 姜秀丽, 杨先海, 程祥. 深冷处理对Al2O3-SiCw陶瓷刀具表面完整性及切削性能的影响[J]. 材料导报, 2023, 37(14): 21120031-8.
[13] 陈喜, 杨春利, 黄江龙, 张浩, 王靖. 高电压钴酸锂正极材料研究进展[J]. 材料导报, 2023, 37(13): 21070223-14.
[14] 秦珩, 李凯霖, 戴兴健, 周欢, 张育新. Co3O4@MnSiO3@硅藻土三元复合材料的制备及赝电容性能提升机理[J]. 材料导报, 2023, 37(11): 21110025-6.
[15] 谢焕玲, 赵秋月, 张廷安, 李杨. 三元镍钴锰前驱体制备方法的研究现状[J]. 材料导报, 2022, 36(Z1): 21060186-9.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed