Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 24070202-10    https://doi.org/10.11896/cldb.24070202
  无机非金属及其复合材料 |
纳米SiO2改性聚合物水泥基复合材料孔隙结构演变特征及强度预测
李刊1,*, 魏智强2, 路承功3, 蒲育1
1 兰州工业学院土木工程学院,兰州 730050
2 兰州理工大学土木工程学院,兰州 730050
3 广州大学土木与交通工程学院,广州 510006
Pore Structure Evolution Characteristics and Strength Prediction of Polymer Cement-based Composites Modified by Nano-SiO2
LI Kan1,*, WEI Zhiqiang2, LU Chenggong3, PU Yu1
1 School of Civil Engineering, Lanzhou Institute of Technology, Lanzhou 730050, China
2 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
3 School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China
下载:  全 文 ( PDF ) ( 16832KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高聚合物水泥基材料的水化速率,利用纳米SiO2对其进行改性,成功制备出纳米SiO2改性聚合物水泥基复合材料。为进一步明确复合材料强度与不同尺度孔隙结构之间的关系,首先探究了纳米SiO2对聚合物水泥砂浆水化进程、抗压强度、孔隙结构特征参数、孔隙量及孔径分布的影响规律,然后重点探讨了抗压强度与孔径分布和孔隙量参数之间的关系,最后采用多元回归分析法,建立了抗压强度与孔径分布和孔隙量两类孔隙参数之间的定量关系模型。结果表明:纳米SiO2改性聚合物水泥砂浆试件在早期及后期强度均高于聚合物水泥砂浆基准试件,且平均孔径、中值孔径降低,最可几孔径变小,大孔和毛细孔比例大幅降低,过渡孔比例增加,凝胶孔比例变化较小,改性砂浆的孔隙结构得到极大细化。通过回归分析可知,对孔径分布参数来说,平均孔径与抗压强度的相关性最高;对孔隙量参数来说,毛细孔孔隙量与抗压强度的相关性最高,且考虑孔径分布和孔隙量两方面的孔隙结构预测模型可以准确地预测纳米SiO2改性聚合物水泥基复合材料的强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李刊
魏智强
路承功
蒲育
关键词:  纳米二氧化硅  孔隙结构  聚合物水泥基材料  多元回归  预测模型    
Abstract: In order to improve the hydration rate of polymer cement-based materials, nano-SiO2 was added to prepare polymer cement-based compo-sites modified by nano-SiO2. For the sake of clarifying the relationship between the strength and the porous structure of different-scale pores, the effects of nano-SiO2 on the hydration process, compressive strength, pore structure characteristic parameters, pore volume and pore diameter distribution of polymer cement mortar were firstly investigated. Secondly, the relationship between compressive strength and pore diameter distribution and pore volume parameters were further discussed. Finally, multiple regression analysis was used to establish a quantitative relationship model between compressive strength and pore diameter distribution and pore volume. The results show that the strength of polymer cement mortar modified by nano-SiO2 specimens is higher than that of polymer cement mortar specimens in the early and late stages. In addition, the average pore diameter and medium pore diameter are reduced, and the most probable pore diameter is reduced, the proportion of macropores and capillary pores is greatly reduced, the proportion of transition pores is increased, and the proportion of gel pores is not changed much, so that the pore structure of modified mortar is greatly refined. According to the regression analysis, for the pore diameter distribution parameters, the correlation between the average pore diameter and compressive strength is the highest. The pore structure prediction model considering both pore diameter distributionand pore volume can accurately predict the strength of polymer cement-based composites modified by nano-SiO2.
Key words:  nano-SiO2    pore structure    polymer cement-based material    multiple regression    prediction model
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  TU528  
基金资助: 甘肃省高校青年博士支持项目(2024QB-105)
通讯作者:  *李刊,博士,兰州工业学院土木工程学院讲师,主要研究方向为绿色高性能混凝土、混凝土耐久性及寿命预测、纳米水泥基复合材料等。likan1121@163.com   
引用本文:    
李刊, 魏智强, 路承功, 蒲育. 纳米SiO2改性聚合物水泥基复合材料孔隙结构演变特征及强度预测[J]. 材料导报, 2025, 39(6): 24070202-10.
LI Kan, WEI Zhiqiang, LU Chenggong, PU Yu. Pore Structure Evolution Characteristics and Strength Prediction of Polymer Cement-based Composites Modified by Nano-SiO2. Materials Reports, 2025, 39(6): 24070202-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070202  或          https://www.mater-rep.com/CN/Y2025/V39/I6/24070202
1 Jo Y K. Construction and Building Materials, 2020, 242, 118134.
2 Zhou C, Chen L, Zheng S, et al. Canadian Journal of Civil Engineering, 2020, 47(11), 1226.
3 Papaioanno S, Argyropoulou R, Kalogiannidou C, et al. The Journal of Adhesion, 2019, 95(2), 126.
4 Kim M O. Applied Sciences, 2020, 10(3), 1061.
5 Yassene A A M, Ismail M R, Afify M S. Journal of Vinyl and Additive Technology, 2020, 26(2), 144.
6 Mohammed A S, Mahmood W, Qadir W S, et al. Ain Shams Engineering Journal, 2023, 14(4), 101922.
7 Wang P M, Liu E G. Journal of Building Materials, 2009, 12(3), 253(in Chinese).
王培铭, 刘恩贵. 建筑材料学报, 2009, 12(3), 253.
8 Wang P M, Zhao G R, Zhang G F, et al. Bulletin of the Chinese Ceramic Society, 2014, 42(5), 653(in Chinese).
王培铭, 赵国荣, 张国防, 等. 硅酸盐学报, 2014, 42(5), 653.
9 Zhuang C, Chen Y. Nanotechnology Reviews, 2019, 8(1), 562.
10 Xu J, Wang X Z. Journal of the Chinese Ceramic Society, 2018, 46(8), 1053(in Chinese).
徐晶, 王先志. 硅酸盐学报, 2018, 46(8), 1053.
11 Hakamy A. Journal of Taibah University for Science, 2021, 15 (1), 909.
12 Balapour M, Joshaghani A, Althoey F. Construction and Building Materials, 2018, 181, 27.
13 Regalla S S. Case Studies in Construction Materials, 2024, 20, e03147.
14 Feng P, Chang H, Liu X, et al. Materials & Design, 2020, 186, 108320.
15 Wu H, Wang C, Yang D, et al. Journal of Building Engineering, 2023, 63, 105522.
16 Chen X Y, Zhou Q, Chen Z Y, et al. Materials Reports, 2022, 36(S2), 191(in Chinese).
陈旭勇, 周启, 程子扬, 等. 材料导报, 2022, 36(S2), 191.
17 Lai Q, Li G. Materials Research and Application, 2022, 16(2), 198(in Chinese).
赖祺, 李古. 材料研究与应用, 2022, 16(2), 198.
18 Liang S, Cui H Z, Xu D Y. Acta Materiae Compositae Sinica, 2019, 36(2), 498(in Chinese).
梁圣, 崔宏志, 徐丹玥. 复合材料学报, 2019, 36(2), 498.
19 Zabihi N, Ozkul M H. Construction & Building Materials, 2018, 168, 570.
20 Zhou L M, Wang C, Li D L, et al. Journal of Shenzhen University Science and Technology, 2014, 31(3), 227(in Chinese).
周立民, 王冲, 李东林, 等. 深圳大学学报理工版, 2014, 31(3), 227.
21 Gan L, Feng X W, Shen Z Z, et al. Journal of Central South University (Science and Technology), 2023, 54(12), 4860(in Chinese).
甘磊, 冯先伟, 沈振中, 等. 中南大学学报(自然科学版), 2023, 54(12), 4860.
22 Xue C Z, Shen A Q, Guo Y C. Materails Reports, 2019, 33(8), 1348(in Chinese).
薛翠真, 申爱琴, 郭寅川. 材料导报, 2019, 33(8), 1348.
23 Meng R Q. The effects of nano-SiO2on the properties and microstructure of polymer modified cementitous materials at different temperature. Master's Thesis, Zhejiang University, China, 2014(in Chinese).
孟睿覃. 不同温度下纳米SiO2对PMC材料性能和微结构的影响研究. 硕士学位论文, 浙江大学, 2014.
24 Zhao S J. Study on mechanical properties and microstructure of ultra-high performance cementitious composite. Ph. D. Thesis, Southeast University, China, 2016(in Chinese).
赵素晶. 超高性能水泥基材料的力学性能和微结构研究. 博士学位论文, 东南大学, 2016.
25 Du X F. Influence and mechanism of nano-SiO2 agglomeration on the properties of the cement-based materials. Master's Thesis, Zhejiang University of Technology, China, 2012(in Chinese).
杜祥飞. 纳米SiO2团聚特性及其对水泥基材料性能的影响与机理. 硕士学位论文, 浙江工业大学, 2012.
26 Zhang Y, Jin Z Q, Zhang Y S. Journal of the Chinese Ceramic Society, 2017, 45(2), 249(in Chinese).
张宇, 金祖权, 张云升. 硅酸盐学报, 2017, 45(2), 249.
27 Ryshkewitch E. Journal of the American Ceramic Society, 1953, 36(2), 65.
28 Schiller K K. Mechanical Properties of Non-metallic Brittle Materials, 1958, 35.
29 Hansen T C. Special Publication, 1968, 20, 43.
30 Jambor J. Cement and Concrete Research, 1990, 20(6), 948.
31 Atize C, Massidda L. Cement and Concrete Research, 1986, 1, 56.
32 Kumar R, Bhattacharjee B. Cement and Concrete Research, 2003, 33(1), 155.
33 Hasselman D. Journal of the American Ceramic Society, 1963, 46(11), 564.
34 Balshin M Y. Doklady Akademii nauk SSSR, 1949, 67(5), 831.
[1] 李自强, 崔素萍, 马忠诚, 王亚丽, 王晶, 刘云, 乔志杨. 机器学习算法用于水泥强度预测的研究进展[J]. 材料导报, 2025, 39(5): 23120133-12.
[2] 宋国锋, 张师伟, 刘俊, 刘建坤, 梁思明. 硫铝酸盐膨胀剂对水泥砂浆早期徐变与内部湿度的影响[J]. 材料导报, 2025, 39(4): 23100111-7.
[3] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[4] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[5] 何涛, 马国政, 李海庆, 石佳东, 李振, 郭伟玲, 邢志国. 固体润滑齿轮接触疲劳寿命及影响因素研究现状[J]. 材料导报, 2025, 39(1): 23120091-15.
[6] 陈庆发, 杨文雄, 吴家有, 牛文静. 水灰比对薄喷衬层材料抗拉性能影响的宏微观试验研究[J]. 材料导报, 2024, 38(8): 22090309-7.
[7] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[8] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[9] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[10] 李再久, 夏臣平, 刘明诏, 金青林. 骨组织工程镁基支架的制备研究进展[J]. 材料导报, 2024, 38(4): 22050324-11.
[11] 董必钦, 张枭, 刘源涛, 何晓伟, 王琰帅. 硫酸铝对高掺量流化床粉煤灰基泡沫混凝土性能的影响[J]. 材料导报, 2024, 38(20): 23090133-8.
[12] 邱国兴, 蔡明冲, 张毅, 苏炳瑞, 杨永坤, 李小明. 基于灰色关联分析和机器学习的高炉铁水硅含量预测[J]. 材料导报, 2024, 38(20): 23080170-6.
[13] 莫耀鸿, 刘剑辉, 刘乐平, 陈正, 蒋增贵, 史才军. 水泥-蔗渣灰-矿粉海砂砂浆的抗压强度与抗氯盐渗透性能研究[J]. 材料导报, 2024, 38(14): 23030005-10.
[14] 朱子健, 胡鹏博, 冯驰. 多孔材料毛细滞后现象研究综述[J]. 材料导报, 2024, 38(12): 23030281-10.
[15] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed