Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23080170-6    https://doi.org/10.11896/cldb.23080170
  金属与金属基复合材料 |
基于灰色关联分析和机器学习的高炉铁水硅含量预测
邱国兴1, 蔡明冲1, 张毅2, 苏炳瑞1, 杨永坤1, 李小明1,*
1 西安建筑科技大学冶金工程学院,西安 710055
2 山东钢铁股份有限公司莱芜分公司技术中心,济南 271103
Prediction of Silicon Content in Blast Furnace Molten Iron Using Grey Correlation Analysis and Machine Learning
QIU Guoxing1, CAI Mingchong1, ZHANG Yi2, SU Bingrui1, YANG Yongkun1, LI Xiaoming1,*
1 School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2 Laiwu Branch Technology Center, Shandong Iron and Steel Co., Ltd., Jinan 271103, China
下载:  全 文 ( PDF ) ( 3763KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高炉铁水硅含量通常被用作表征“炉温”和高炉经济效益的重要指标,建立及时准确的高炉铁水硅含量预报模型,对于高炉稳定生产具有重要意义。本工作考虑时间延迟及灰色关联分析(GRA)并结合主成分分析(PCA)和长短期记忆网络(LSTM)建立了一种新的预测模型。首先,从硅的还原氧化行为角度出发,选出高炉生产中与铁水硅含量相关的操作参数、状态参数和结果参数。其次,通过GRA确定各参数与铁水硅含量的关联度大小,筛选出硅含量的主要影响因素。在此基础上,对国内某3 200 m3级高炉一年共计8 544组生产数据进行降维处理。模型输入变量由降维得到的13个主成分组成,以铁水硅含量作为输出变量,建立了预测模型。该预测模型具有合理的泛化能力、鲁棒性和准确性。预测结果分析表明,该模型的决定系数(R2)为0.929 7,均方误差(MSE)和平均绝对误差(MAE)分别为0.001 2和0.025 4,实现了对高炉铁水硅含量精确预测。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邱国兴
蔡明冲
张毅
苏炳瑞
杨永坤
李小明
关键词:  高炉  灰色关联分析  机器学习  硅含量  预测模型    
Abstract: The silicon content in molten iron is commonly used as an important indicator to characterize the ‘chemical heat’ and economic benefits of the blast furnace. Establishment a timely and accurate prediction model for the silicon content in molten iron is of great significance for stable production of the blast furnace. In this work, an innovative prediction model was established by considering the time delay and the grey relational analysis (GRA) combining principal component analysis (PCA) and long short-term memory network (LSTM). Firstly, from the perspective of the reduction-oxidation behavior of silicon, the operating parameters, state parameters and result parameters relevant to the silicon content of blast furnace iron in production were selected. Secondly, through GRA, the degree of correlation between each parameter and the silicon content in molten iron was determined, and the main factors affecting the silicon content in molten iron were screened out. On this basis, a total of 8 544 sets of production data for a 3 200 m3 blast furnace in China were dimensionally reduced in one year. A prediction model was established using the 13 principal components obtained as input variables and the silicon content in molten iron as output variables. The prediction model has reasonable generalization ability, robustness and accuracy. The analysis of prediction results shows that the determination coefficient (R2) of the model is 0.929 7, the mean square error (MSE) and mean absolute error (MAE) are 0.001 2 and 0.025 4 respectively, realizing accurate prediction of the silicon content of blast furnace molten iron.
Key words:  blast furnace    grey relational analysis    machine learning    silicon content    forecasting model
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  TF57  
  TP29  
通讯作者:  * 李小明,西安建筑科技大学冶金工程学院教授、博士研究生导师以及副院长。1997年西安建筑科技大学钢铁治金专业本科毕业,2000年西安建筑科技大学钢铁冶金专业硕士毕业,2005年西安交通大学动力工程及工程热物理专业博士毕业。主要从事钢铁冶金新工艺新技术、冶金环保与资源综合利用、冶金过程数学物理模拟与智能控制、冶金智能化与大数据分析、高附加值钢铁等方面的研究工作。主持国家级项目3项、省部级项目3项,主持企业科技攻关项目4项。以第一作者或者通信作者在冶金和材料等领域的重点刊物上发表研究论文150余篇。xmli88@126.com   
作者简介:  邱国兴,西安建筑科技大学冶金工程学院副教授、硕士研究生导师。2008年东北大学冶金工程专业本科毕业,2016年东北大学冶金工程专业硕士毕业,2020年东北大学材料加工工程专业博士毕业。主要从事高炉炼铁工艺优化,洁净钢冶金理论、工艺及新品种开发,新型高性能钢铁材料组织及性能调控等方面的研究工作。主持省部级项目 2项,作为主要完成人参与国家级项目3项、企业科技攻关项目5项。以第一作者或通信作者在冶金和材料等领域的重点刊物上发表研究论文 50 余篇,其中 SCI 论文 20 余篇;第一发明人授权发明专利 19 项,合作授权发明专利20余项。
引用本文:    
邱国兴, 蔡明冲, 张毅, 苏炳瑞, 杨永坤, 李小明. 基于灰色关联分析和机器学习的高炉铁水硅含量预测[J]. 材料导报, 2024, 38(20): 23080170-6.
QIU Guoxing, CAI Mingchong, ZHANG Yi, SU Bingrui, YANG Yongkun, LI Xiaoming. Prediction of Silicon Content in Blast Furnace Molten Iron Using Grey Correlation Analysis and Machine Learning. Materials Reports, 2024, 38(20): 23080170-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080170  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23080170
1 Dai Y X, Li J, et al. Ironmaking & Steelmaking, 2021, 48(4), 47.
2 Chen W, Kong F, Wang B, et al. Ironmaking & Steelmaking, 2019, 46(10), 74.
3 Han Y, Li J, Yang X L, et al. Complexity, DOI: 10.1155/2018/8079697.
4 Li J P, Hua C C, Yang Y N, et al. IEEE Transactions on Industrial Electronics, 2018, 65(6), 4933.
5 Le C Y, Bengio Y, Hinton G. Nature, 2015, 521(7553), 436.
6 Bao X J, Weng S H, Chen G, et al. Iron & Steel, 2022, 57(9), 166 (in Chinese).
包向军, 翁思浩, 陈光, 等. 钢铁, 2022, 57(9), 166.
7 Wang J H, Huang D M, Gong J Q, et al. In: The 13th China Iron and Steel Annual Meeting of China Metal Society. Chongqing, 2022, pp.53 (in Chinese).
王剑虎, 黄冬明, 龚敬群, 等. 中国金属学会第十三届中国钢铁年会. 重庆, 2022, pp.53.
8 Meng L R, Li F M, Liu X J, et al. Metallurgical Industry Automation, 2023, 47(2), 27 (in Chinese).
孟令茹, 李福民, 刘小杰, 等. 冶金自动化, 2023, 47(2), 27.
9 Liu X J, Li X, Liu E H, et al. Multipurpose Utilization of Mineral Resources, 2021(4), 91 (in Chinese).
刘小杰, 李欣, 刘二浩, 等. 矿产综合利用, 2021(4), 91.
10 Zeng Y F, Li X W. Control & Measurement, 2006, 22(19), 291 (in Chinese).
曾燕飞, 李小伟. 控制与测量, 2006, 22(19), 291.
11 Jiang Z H, Dong M L, Gui W H, et al. Acta Automatica Sinica, 2016, 42(5), 715 (in Chinese).
蒋朝辉, 董梦林, 桂卫华, 等. 自动化学报, 2016, 42(5), 715.
12 Zuang T, Yang C J. Metallurgical Industry Automation, 2017, 41(4), 1 (in Chinese).
庄田, 杨春节. 冶金自动化, 2017, 41(4), 1.
13 Song J H, Yang C J, Zhou Z, et al. Journal of Chemical Industry and Engineering, 2016, 67(3), 729 (in Chinese).
宋菁华, 杨春节, 周哲, 等. 化工学报, 2016, 67(3), 729.
14 Jiang Z H, Xu C, Gui W H, et al. Acta Automatica Sinica, 2022, 48(1), 194 (in Chinese).
蒋朝辉, 许川, 桂卫华, 等. 自动化学报, 2022, 48(1), 194.
15 Zhao N, Wang Y Y. Metallurgical Analysis, 2020, 40(2), 1 (in Chinese).
赵宁, 王玉英. 冶金分析, 2020, 40(2), 1.
16 Li Z L, Yang C J. Journal of Chemical Industry and Engineering, 2018, 69(3), 992 (in Chinese).
李泽龙, 杨春节. 化工学报, 2018, 69(3), 992.
17 Fukagawa T. Kawasaki Steel GIHO, 1991, 23(3), 203.
18 Vescovi M R, Farquhar A. IEEE Expert, 1997, 12(3), 42.
19 Wu X F, Fei M R. Journal-Zhejiang University Engineering Science, 2007, 41(10), 1722.
20 Jin Z B. Mining & Metallurgy in Hainan, 1994(4), 28 (in Chinese).
金智彬. 海南矿冶, 1994(4), 28.
21 Liang L S. Baosteel Technology, 2000(6), 36 (in Chinese).
梁利生. 宝钢技术, 2000(6), 36.
22 Yue Y J, Dong A, Zhao H, et al. Computer Simulation, 2017, 34(2), 362(in Chinese).
岳有军, 董安, 赵辉, 等. 计算机仿真, 2017, 34(2), 362.
23 Lyu Q, Liu Y M, Zhang Z F, et al. Journal of Iron & Steel Research, 2018, 30(12), 957 (in Chinese).
吕庆, 刘月明, 张振峰, 等. 钢铁研究学报, 2018, 30(12), 957.
24 Liu X J, Deng Y, Li X, et al. China Metallurgy, 2021, 31(2), 10 (in Chinese).
刘小杰, 邓勇, 李欣, 等. 中国冶金, 2021, 31(2), 10.
25 Smith M. Ironmaking & Steelmaking, 2015, 42(10), 734.
26 Jin Y L, Xu N P. Iron & Steel, 2004(1), 17 (in Chinese).
金永龙, 徐南平. 钢铁, 2004(1), 17.
27 Gaura E I, Brusey J, Allen M, et al. IEEE Sensors Journal, 2013, 13(10), 3816.
28 Huang C L, Tang Y L, Zhang X F, et al. Computer Simulation, 2020, 37(2), 398 (in Chinese).
黄陈林, 汤亚玲, 张学锋, 等. 计算机仿真, 2020, 37(2), 398.
29 Lee S Y, Tama B A, Choi C, et al. IEEE Access, 2020, 8, 21953.
[1] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[2] 王博, 盛鹏, 徐丽, 李圣驿, 白会涛, 李慧, 薛晴. 材料基因工程技术在电工材料研发中的应用与展望[J]. 材料导报, 2024, 38(13): 23020098-17.
[3] 张琦祥, 苑峻豪, 李震, 李文杰, 孙丹, 王清, 董闯. 基于第一性原理计算的固溶体合金集成学习设计方法[J]. 材料导报, 2024, 38(13): 23030089-8.
[4] 朱子健, 胡鹏博, 冯驰. 多孔材料毛细滞后现象研究综述[J]. 材料导报, 2024, 38(12): 23030281-10.
[5] 龙武剑, 罗盛禹, 程博远, 冯甘霖, 李利孝. 机器学习算法用于自密实混凝土性能设计的研究进展[J]. 材料导报, 2024, 38(11): 22110224-10.
[6] 张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
[7] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[8] 王世杰, 杨杰, 马硕, 韩硕, 王龙, 段国林. 机器学习在功能梯度材料设计-制备中的应用综述[J]. 材料导报, 2023, 37(21): 22030237-9.
[9] 徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
[10] 罗祥, 王玲, 王振地. 引气剂起泡和稳泡能力的温度敏感性研究[J]. 材料导报, 2023, 37(18): 22030209-8.
[11] 余春秀, 王云凯, 贺子娟, 李玮, 陈家林, 李世鸿, 李俊鹏. 电子封装用环氧胶粘剂改性研究进展[J]. 材料导报, 2023, 37(15): 21120084-10.
[12] 高红梅, 兰永伟, 郭楠. 温度作用后花岗岩微观孔隙结构和渗透率的研究[J]. 材料导报, 2023, 37(13): 21070003-6.
[13] 李孝晨, 丁文艺, 朱霄汉, 郑明杰. 基于机器学习的RAFM钢中子辐照脆化预测模型研究[J]. 材料导报, 2023, 37(1): 22010142-7.
[14] 孙思威, 金鑫, 邓昌宁, 郭乃胜, 余耀威. 基于分形理论的蓄能自发光道路标线涂料性能预测模型研究[J]. 材料导报, 2022, 36(Z1): 20110256-7.
[15] 杜青铉, 张宇航, 孙伟豪, 刘蕊, 庄尧量, 夏军武. 基于混合模型的煤矸石透水混凝土透水系数预测[J]. 材料导报, 2022, 36(Z1): 22040077-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed