Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 23030281-10    https://doi.org/10.11896/cldb.23030281
  无机非金属及其复合材料 |
多孔材料毛细滞后现象研究综述
朱子健1,2, 胡鹏博1,2, 冯驰1,2,*
1 重庆大学建筑城规学院,重庆 400045
2 重庆大学山地城镇建设与新技术教育部重点实验室,重庆 400045
Capillary Hysteresis Phenomenon in Porous Materials:a Review
ZHU Zijian1,2, HU Pengbo1,2, FENG Chi1,2,*
1 School of Architecture and Urban Planning, Chongqing University, Chongqing 400045, China
2 Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400045, China
下载:  全 文 ( PDF ) ( 4477KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 毛细滞后现象指在一定水势下,多孔材料放湿过程的含湿量普遍高于吸湿过程的含湿量,即多孔材料在同一个水势下对应着多个含湿量。在土木建筑、食品科学和土壤科学等领域的工程实践中,往往因忽略毛细滞后现象而无法准确地计算和控制多孔材料的含湿量,进而给建筑围护结构热湿传递控制、食品的营养与保鲜以及土壤的结构稳定等方面带来负面影响。针对上述现象,本文总结了毛细滞后现象的产生原因、实验研究方法以及预测模型,旨在更加全面深刻地理解多孔材料的储湿机理,为建立更精确的描述多孔材料含湿量与水势关系的数学物理模型提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱子健
胡鹏博
冯驰
关键词:  毛细滞后  多孔材料  保水曲线  预测模型    
Abstract: Capillary hysteresis is a phenomenon where the moisture content of porous materials in drying process is generally higher than that in wetting process at a certain water potential. This means that porous materials have multiple moisture contents at the same water potential. Neglecting capillary hysteresis in the engineering practices of civil construction, food science, and soil science can lead to inaccurate calculation and control ofthe moisture content, which can negatively impact heat and moisture transfer in building envelopes, nutrition and freshness of food, and the structural stability of soil. This paper aims to address this phenomenon by summarizing the causes, experimental research methods, and prediction models of capillary hysteresis. The goal is to provide a more comprehensive and profound understanding of the moisture storage mechanism of porous materials and offer references for the establishment of a more accurate mathematical and physical model describing the relationship between the moisture content of porous materials and water potential. It is crucial to consider capillary hysteresis when dealing with porous materials to ensure precise and effective moisture control.
Key words:  capillary hysteresis    porous material    water retention curve    prediction model
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TU111  
基金资助: 国家自然科学基金面上项目(52178065);重庆大学山地城镇建设与新技术教育部重点实验室开放课题(LNTCCMA-20230104)
通讯作者:  *冯驰,重庆大学建筑城规学院建筑技术科学系副主任、教授、博士研究生导师。2014年博士毕业于华南理工大学建筑技术科学专业。在国内外著名期刊、会议上发表论文90余篇,研究方向为建筑材料热湿性能测试与优化、建筑围护结构传热与传质。fengchi860602@outlook.com   
作者简介:  朱子健,2020年6月毕业于苏州科技大学,获得工学学士学位。现为重庆大学建筑城规学院硕士研究生,在冯驰教授的指导下进行研究。主要研究领域为多孔建筑材料的热湿性能。
引用本文:    
朱子健, 胡鹏博, 冯驰. 多孔材料毛细滞后现象研究综述[J]. 材料导报, 2024, 38(12): 23030281-10.
ZHU Zijian, HU Pengbo, FENG Chi. Capillary Hysteresis Phenomenon in Porous Materials:a Review. Materials Reports, 2024, 38(12): 23030281-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030281  或          http://www.mater-rep.com/CN/Y2024/V38/I12/23030281
1 Adan O C G. On the fungal defacement of interior finishes. Ph. D. Thesis, Eindhoven University of Technology, Holland, 1994.
2 Hart B J. Allergy, 1998, 53(48 Suppl), 13.
3 Fang L, Clausen G, Fanger P O. Indoor Air, 1998, 8(2), 80.
4 Wolkoff P, Kjærgaard S K. Environment International, 2007, 33(6), 850.
5 Arianna B, Alberto S. Moisture and buildings:durability issues, health implications and strategies to mitigate the risks, Woodhead Publishing, UK, 2021. pp.34.
6 Viitanen H, Vinha J, Salminen K, et al. Journal of Building Physics, 2010, 33(3), 201.
7 Harrestrup M, Svendsen S. Building and Environment, 2015, 85, 123.
8 Ma N, Qi Y, Chen Q, et al. Plant Molecular Biology Reporter, 2022, 41(1), 104.
9 Isengard H D. Ensuring global food safety, Academic Press, USA, 2010, pp.109.
10 Datta A K. Journal of Food Engineering, 2007, 80(1), 80.
11 Datta A K. Journal of Food Engineering, 2007, 80(1), 96.
12 Tuli A, Hopmans J W, Rolston D E, et al. Soil Science Society of America Journal, 2005, 69(5), 1361.
13 Wang Q, Shao M, Horton R. Soil Science Society of America Journal, 2004, 68(3), 713.
14 Tyagi J V, Qazi N, Rai S P, et al. Journal of Forestry Research, 2013, 24, 317.
15 Kumaran M K. Heat, air and moisture transfer in insulated envelope parts:final report:volume 3:task 3:material properties, International Energy Agency, Canada, 1996, pp.3.
16 Feng C, Janssen H. Building Environment, 2019, 152, 39.
17 Zhang Z, Thiery M, Baroghel-Bouny V. Cement and Concrete Research, 2014, 57, 44.
18 Inoue S, Tanaka H, Hanzawa Y, et al. Studies in surface science and catalysis, Elsevier, 2000, pp.167.
19 Steeman H J, van Belleghem M, Janssens A, et al. Building and Environment, 2009, 44(10), 2176.
20 Scheffler G A. Validation of hygrothermal material modelling under consideration of the hysteresis of moisture storage. Ph. D. Thesis, Dresden University of Technology, German, 2008.
21 Tarantino A, Romero E, Cui Y J. Geotechnical and Geological Enginee-ring, 2008, 26(6), 613.
22 Albers B. Acta Mechanica, 2014, 225(8), 2163.
23 Sheta H. Simulation von mehrphasenvorgängen in porösen medien unter einbeziehung von hysterese-effekten. Ph. D. Thesis, University of Stuttgart, German, 1999.
24 Zhang X. Moisture storage characterization for heat and moisture transport in wood materials. Ph. D. Thesis, Tongji University, China, 2016.
25 Time B. Hygroscopic moisture transport in wood, Norwegian University of Science and Technology Trondheim, Norway, 1998, pp.30.
26 Janz M. Journal of Materials in Civil Engineering, 2001, 13(5), 364.
27 Feng C. Study on the test methods for the hygric properties of porous building materials. Ph. D. Thesis, South China University of Technology, China, 2014 (Chinese).
冯驰. 多孔建筑材料湿物理性质的测试方法研究. 博士学位论文, 华南理工大学, 2014.
28 Feng C, Janssen H, Meng Q, et al. In:Proceedings of the 10th Nordic Symposium on Building Physics. Sweden, 2014, pp.435.
29 Wilkes K, Atchley J, Childs P. In:Proceedings of the International Conference on Performance of Exterior Envelopes of Whole Buildings IX. Florida, 2004.
30 T/CECS 10203-2022. Test methods for hygric physical properties of buil-ding materials, 2022(in Chinese).
T/CECS 10203-2022. 建筑材料湿物理性质测试方法, 2022.
31 Al-Muhtaseb A H, McMinn W A M, Magee T R A. Food and Biopro-ducts Processing, 2002, 80(2), 118.
32 Feng C, Cui Y, Wang D. In:14th International Conference of Indoor Air Quality and Climate. Belgium, 2016.
33 ISO 12571:2021(en) Hygrothermal performance of building materials and products-Determination of hygroscopic sorption properties. 2021.
34 ASTM C1498-04a:Standard Test Method for Hygroscopic Sorption Isotherms of Building Materials. 2016.
35 GB/T 20312-2006. Hygrothermal performance of building materials and products. Determination of hygroscopic sorption properties. 2006
GB/T 20312-2006. 建筑材料及制品的湿热性能. 吸湿性能的测定. 2006.
36 Lu Y, Abuel-Naga H, Bouazza A. Geotextiles and Geomembranes, 2017, 45(1), 23(in Chinese).
37 Abuel-Naga H, Bouazza A. Geosynthetics International, 2010, 17, 313.
38 Hilf J W. An investigation of pore-water pressure in compacted cohesive soils, University of Colorado at Boulder, 1956.
39 Mavroulidou M, Zhang X, Gunn M. In:11th International Conference on the Environmental Science and Technology. Greece, 2009, pp.35.
40 Southen J M, Kerry Rowe R. Geotextiles and Geomembranes, 2007, 25(1), 2.
41 Lagerwerff J V, Ogata G, Eagle H E. Science, 1961, 133(3463), 1486.
42 Beddoe R A, Take W A, Rowe R K. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(11), 1028.
43 Samingan A, Schanz T. Vadose Zone Journal, 2005, 4, 1087.
44 Lei Y, Yang H Y, Zhang Y, et al. Building Science, 2021, 37(2), 165 (in Chinese).
雷玥, 杨寒羽, 张宇, 等. 建筑科学, 2021, 37(2), 165.
45 ASTM C1699-09:Standard Test Method for Moisture Retention Curves of Porous Building Materials Using Pressure Plates1, 2015.
46 ISO 11274:2019 Soil quality-Determination of the water retention characteristic-Laboratory methods, 2019.
47 ASTM D6836-16 Standard Test Methods for Determination of the Soil Water Characteristic Curve for Desorption Using Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, or Centrifuge, 2016.
48 ISO 15901-1:2016 Evaluation of pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption-Part 1:Mercury porosimetry, 2016.
49 ASTM D4404-18 Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry, 2018.
50 GB/T 21650. 1-2008. Pore size distribution and porosity of solid mate-rials by mercury porosimetry and gas adsorption-Part 1:Mercury porosimetry. 2008(in Chinese).
GB/T 21650. 1-2008. 压汞法和气体吸附法测定固体材料孔径分布和孔隙度 第1部分:压汞法, 2008.
51 Feng C, Janssen H, Feng Y, et al. Building and Environment, 2015, 85, 160.
52 Hansen M H. Retention curves measured using pressure plate and pressure membrane apparatus:Description of method and interlaboratory comparison, SBI forlag, Denmark, 1998,
53 Yan G, Li Z, Bore T, et al. In:70th Canadian Geotechnical Conference. Canada, 2017, pp.1.
54 Roels S, Elsen J, Carmeliet J, et al. Materials and Structures, 2001, 34(2), 76.
55 Feng C, Janssen H. Building and Environment, 2021, 195, 107727.
56 van Genuchten M T. Soil Science Society of America Journal, 1980, 44(5), 892.
57 Fredlund D G, Xing A. Canadian Geotechnical Journal, 1994, 31, 521.
58 Feng M, Fredlund D. In:Proceedings from Theory to the Practice of Unsaturated Soil Mechanics in Association with the 52nd Canadian Geotechnical Conference and the Unsaturated Soil Group. Canada, 1999, pp.14.
59 Brunauer S, Emmett P H, Teller E. Journal of the American Chemical Society, 1938, 60, 309.
60 Berg C, Bruin S. Water activity and its estimation in food systems:theoretical aspects, Academic Press, USA, 1981, pp.2.
61 Feng C, Janssen H, Wu C, et al. Building and Environment, 2013, 69, 64.
62 Peleg M. Journal of Food Process Engineering, 1993, 16(1), 21.
63 Han X W, Shao M A, Horton R. Pedosphere, 2010, 20(1), 55.
64 Lamara M, Derriche Z. Electronic Journal of Geotechnical Engineering, 2008, 13,
65 Pan N, Sun Z. Thermal and Moisture Transport in Fibrous Materials, 2006, 102.
66 Blahovec J, Yanniotis S. Food and Bioprocess Technology, 2008, 1, 82.
67 Boquet R, Chirife J, Iglesias H A. International Journal of Food Science & Technology, 1978, 13(4), 319.
68 Alamri M S, Mohamed A A, Hussain S, et al. Journal of Chemistry, 2018, 2018, 2369762.
69 Leng M S, Hiag F T, Minyaka E, et al. Journal of Food Science and Technology, 2019, 56(8), 3887.
70 Néel L. Cahiers de physique, 1943, 13, 18.
71 Néel L. Cahiers de physique, 1942, 12, 1.
72 Mualem Y. Water Resources Research, 1974, 10(3), 514.
73 Everett D H. Transactions of the Faraday Society, 1954, 50, 1077.
74 Everett D H. Transactions of the Faraday Society, 1955, 51, 1551.
75 Philip J R. Journal of Geophysical Research, 1964, 69(8), 1553.
76 Topp G C. Soil Science Society of America Journal, 1971, 35(2), 219.
77 Topp G C. Water Resources Research, 1971, 7(4), 914.
78 Poulovassilis A. Soil Science, 1962, 93, 405.
79 Mualem Y. Water Resources Research, 1973, 9(5), 1324.
80 Parlange J Y. Water Resources Research, 1976, 12(2), 224.
81 Pham H Q, Fredlund D G, Barbour S L. Canadian Geotechnical Journal, 2005, 42(6), 1548.
82 Braddock R D, Parlange J Y, Lee H. Transport in Porous Media, 2001, 44(3), 407.
83 Zhang X, Zillig W, Kuenzel H M, et al. Building and Environment, 2015, 92, 387.
84 Viaene P, Vereecken H, Diels J, et al. Soil Science, 1994, 157(6), 345.
85 Mualem Y. Water Resources Research, 1977, 13(4), 773.
86 Skaar C. Wood-Water Relations, 1988, 122.
87 Peralta P N, Bangi A P. Wood and fiber science, 1998, 30, 148.
88 Mualem Y. Soil Science, 1984, 137(6), 379.
89 Pham H Q, Fredlund D G, Barbour S L. Geotechnique, 2003, 53(2), 293.
90 Kudayr L S, Salim S B. Plant Archives, 2019, 19(1), 1009.
91 Mualem Y. Soil Science, 1984, 137(5), 283.
92 Li X S. Computers and Geotechnics, 2005, 32(2), 133.
93 Kohgo Y. Soils and Foundations, 2008, 48(5), 633.
94 Rode C, Hansen P N, Hansen K K. Combined heat and moisture transfer in building constructions. Ph. D. Thesis, Technical College of Denmark, Denmark, 1990.
95 Carmeliet J, Janssen H. In:Proceedings of 7th Symposium on Building Physics in the Nordic Countries. Denmark, 2005, pp.55.
96 Kwiatkowski J, Woloszyn M, Roux J J. Building and Environment, 2009, 44(3), 633.
97 Parker J C, Lenhard R J. Water Resources Research, 1987, 23(12), 2187.
98 Huang H C, Tan Y C, Liu C W, et al. Hydrological Processes:An International Journal, 2005, 19(8), 1653.
99 Remond R, Almeida G, Perre P T. Construction and Building Mate-rials, 2018, 170, 716.
[1] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[2] 王梓霄, 熊良涛, 李浩源. 共价有机框架材料的热导和热电应用研究进展[J]. 材料导报, 2024, 38(12): 24040129-8.
[3] 俞彦飞, 王暄, 高鑫, 宁锋, 张浩鹏, 岳红彦. 基于定向冷冻技术构建的多孔材料及其应用[J]. 材料导报, 2023, 37(5): 21050074-11.
[4] 陈斐, RannalterLeana Ziwen, 宋尚斌, 曹诗雨, 沈强. 氧化物固体电解质的三维框架结构设计及在全固态锂离子电池中的应用[J]. 材料导报, 2023, 37(19): 22020093-15.
[5] 黄世杰, 赵春霞, 王硕, 黄浩然, 李嘉鑫, 李辉, 向东, 李云涛. 聚苯乙烯/α-磷酸锆多孔材料制备及油水乳液分离研究[J]. 材料导报, 2023, 37(16): 21110076-9.
[6] 秦若男, 果春焕, 李艳春, 邵帅齐, 姜风春. 多孔金属材料阻尼性能的研究进展[J]. 材料导报, 2023, 37(15): 21100001-10.
[7] 高红梅, 兰永伟, 郭楠. 温度作用后花岗岩微观孔隙结构和渗透率的研究[J]. 材料导报, 2023, 37(13): 21070003-6.
[8] 吴靓, 周子坤, 姬丽, 肖逸锋, 张乾坤. 多孔Ni-Cu-Ti电极的制备及析氢性能[J]. 材料导报, 2023, 37(13): 21100074-9.
[9] 汤倩茜, 陈栋航, 张春杰, 王钢, 郭利民. 沸石分子筛用于挥发性有机物吸附的研究进展[J]. 材料导报, 2022, 36(Z1): 21050144-9.
[10] 孙思威, 金鑫, 邓昌宁, 郭乃胜, 余耀威. 基于分形理论的蓄能自发光道路标线涂料性能预测模型研究[J]. 材料导报, 2022, 36(Z1): 20110256-7.
[11] 龙朝飞, 张戎令, 段运, 郭海贞, 肖鹏震, 段亚伟. 基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型[J]. 材料导报, 2022, 36(6): 20100044-8.
[12] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[13] 张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 20100169-11.
[14] 王杨鑫, 邓强, 李成贵, 温永宇. 多糖/金属有机框架(MOFs)复合气凝胶的制备及应用进展[J]. 材料导报, 2022, 36(4): 20080197-10.
[15] 于长帅, 罗忠, 骆海涛, 何凤霞. 分层多孔材料声学建模和吸声性能预测方法研究[J]. 材料导报, 2022, 36(16): 21040182-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed