Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 21040182-5    https://doi.org/10.11896/cldb.21040182
  金属与金属基复合材料 |
分层多孔材料声学建模和吸声性能预测方法研究
于长帅1,2,3, 罗忠1,*, 骆海涛2,3, 何凤霞1
1 东北大学机械工程与自动化学院,沈阳 110819
2 中国科学院沈阳自动化研究所,机器人学国家重点实验室,沈阳 110016
3 中国科学院机器人与智能制造创新研究院,沈阳 110169
Research on Acoustic Modeling and Acoustic Performance Prediction of Layered Porous Materials
YU Changshuai1,2,3, LUO Zhong1,*, LUO Haitao2,3, HE Fengxia1
1 School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
2 Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
3 Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
下载:  全 文 ( PDF ) ( 5848KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多孔材料是一种重要的声学材料,工程上常将不同的多孔材料分层组合,来开发具有高吸声性能的声学材料。本工作以声波传播理论的阻抗平移定理和表面阻抗的连续性为基础,将多孔材料等效为流体,结合多孔材料Johnson-Champoux-Allard(JCA)声学模型建立了分层多孔材料声学模型递推公式,进而推导分层多孔材料的吸声系数。设计不同工况的分层多孔材料,建立阻抗管和多孔材料有限元模型,并通过有限元仿真的方法验证了该分层多孔材料声学建模方法的正确性;开展阻抗管试验,通过实验进一步验证了分层多孔材料声学建模方法可用于预测分层多孔材料的吸声性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于长帅
罗忠
骆海涛
何凤霞
关键词:  阻抗平移原理  Johnson-Champoux-Allard模型  分层多孔材料  吸声性能  阻抗管    
Abstract: Porous material is an important acoustic material. In engineering, different porous materials are often layered to develop acoustic materials with high sound absorption performance. In this work, according to the propagation equation of sound wave in fluid and continuity of surface impedance, impedance translation theorem is derived, and the Johnson-Champoux-Allard (JCA) acoustic model of porous material is established. The porous material is equivalent to fluid. The JCA model is combined with impedance translation theorem, the recurrence formula of la-yered porous material acoustic model is established, and then the sound absorption performance of layered porous material is evaluated. Layered porous materials are designed under different working conditions,then the finite element model of impedance tube and porous material is established, and the evaluation method of sound absorption performance of layered porous material is verified by finite element simulation method. The impedance tube test bench is built, and the correctness of sound absorption performance evaluation of layered porous material based on impe-dance translation theorem is further verified by the test method.
Key words:  impedance translation theorem    Johnson-Champoux-Allard model    layered porous material    sound absorption performance    impedance tube
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  TB535+.1  
基金资助: 辽宁省自然基金资助计划(2020-MS-029)
通讯作者:  *zhluo@mail.neu.edu.cn   
作者简介:  于长帅,2013年毕业于东北大学,获得工学学士学位,2015年毕业于东北大学,获得工学硕士学位,2019年考入东北大学工程博士。2015年7月至今,就职于中国科学院沈阳自动化研究所,担任助理研究员,研究方向为振动噪声测试与控制方法。罗忠,2001年毕业于东北大学,获得工学学士学位,2004年毕业于东北大学,获得工学硕士学位,2007年毕业于东北大学,获得工学博士学位。东北大学机械工程与自动化学院教授、博士研究生导师、副院长。“航空动力装备振动及控制”教育部国防重点实验室副主任,主要从事机械动力学与控制方面的理论和试验研究工作。主编和参与撰写著作、机械设计手册和教材等12部,授权国家发明专利17项、软件著作权登记15项。获得教育部科技进步二等奖1项(排名第四)。以第一作者或通讯作者发表学术论文120余篇,其中SCI论文30余篇。
引用本文:    
于长帅, 罗忠, 骆海涛, 何凤霞. 分层多孔材料声学建模和吸声性能预测方法研究[J]. 材料导报, 2022, 36(16): 21040182-5.
YU Changshuai, LUO Zhong, LUO Haitao, HE Fengxia. Research on Acoustic Modeling and Acoustic Performance Prediction of Layered Porous Materials. Materials Reports, 2022, 36(16): 21040182-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040182  或          http://www.mater-rep.com/CN/Y2022/V36/I16/21040182
1 Wang Y H. Research on sound absorption properties and mechanisms of multi-level bionic coupling materials. Ph.D. Thesis, Jilin University, China, 2014(in Chinese).
王永华. 多级仿生耦合材料吸声性能及机理研究.博士学位论文,吉林大学, 2014.
2 Sellen N, Galland M A, Hilbrunner O. In: 8th AIAA/CEAS Aeroacoustics Conference. Breckenridge, Colorado, 2002,pp.2054.
3 Anton J, Green E. Institute of Noise Control Engineering,2018,258,3143.
4 Delany M E, Bazley E N. Applied Acoustics, 1970, 3(2), 105.
5 Miki Y. Journal of the Acoustical Society of Japan (E), 1990,11,19.
6 Champoux Y, Allard J F. Journal of Applied Physics,1991,70(4),1975.
7 Johnson D L, Koplik J, Dashen R, et al. Journal of Fluid Mechanics, 1987, 176(1), 379.
8 Biot M A. Journal of the Acoustical Society of America,1956,28(2),168.
9 Liu X J, Liu J L, Xu B J, et al. Journal of Vibration and Shock. 2012, 31(5),106(in Chinese).
刘新金, 刘建立, 徐伯俊,等. 振动与冲击, 2012, 31(5),106.
10 Ning J F, Zhao G P. Journal of Vibration and Control, 2016,22(12), 2861.
11 Allard J F, Atalla N. Propagation of sound in porous media, modeling sound absor-bing materials; second edtion, John Wiley & Sons, Ltd Press, 2009, pp.13.
12 Atalla Y, Panneton R. Canadian Acoustics, 2005, 33(1), 11.
13 Zhan F L, Xu J W. Virtual.lab acoustics simulation calculation from introduction to mastery, Northwest University of Technology Press, China, 2013(in Chinese).
詹福良, 徐俊伟. Virtual.Lab Acoutstics声学仿真计算从入门到精通, 西北工业大学出版社, 2013.
14 Utsuno H, Tanaka T, Fujikawa T, et al. Journal of the Acoustical Society of America, 1989, 86(2), 637.
15 Olny X, Panneton R. Journal of the Acoustical Society of America, 2008, 123(2),814.
[1] 于长帅, 罗忠, 骆海涛, 何凤霞. 多孔吸声材料声学模型及其特征参数测试方法研究进展[J]. 材料导报, 2022, 36(4): 20110035-11.
[2] 彭敏, 赵晓明. 纤维类吸声材料的研究进展[J]. 材料导报, 2019, 33(21): 3669-3677.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed