Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 23050100-8    https://doi.org/10.11896/cldb.23050100
  高分子与聚合物基复合材料 |
SEBS与β-NAs对PP的协同增韧作用及增韧机理研究
李姝姝1,2, 程鹏飞2, 马应霞1,*, 李广全2,*
1 兰州理工大学材料科学与工程学院,兰州 730050
2 中国石油天然气股份有限公司石油化工研究院兰州化工研究中心,兰州 730060
Synergistic Toughening Effect of SEBS and β-NAs on PP and the Toughening Mechanism
LI Shushu1,2, CHENG Pengfei2, MA Yingxia1,*, LI Guangquan2,*
1 School of Materials Science & Engineering,Lanzhou University of Technology,Lanzhou 730050,China
2 Lanzhou Petrochemical Research Center,Petrochemical Research Institute,Petro China,Lanzhou 730060,China
下载:  全 文 ( PDF ) ( 54778KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究以聚丙烯(PP)为基体、氢化苯乙烯-丁二烯嵌段共聚物(SEBS)和β成核剂(β-NAs)为增韧剂,采用熔融共混法制备了PP/SEBS/β-NAs共混物,研究了SEBS和β-NAs对PP的协同增韧作用并探究了增韧机理。结果表明:当添加20%SEBS和0.05%β-NAs时,得到的PP/SEBS/β-NAs共混物样品的冲击强度达到了76.1 kJ/m2,较纯PP(3.9 kJ/m2)提高了1 851.3%。SEBS和β-NAs的协同效应不仅能够增韧PP,还能够提高其加工性能。β-NAs的加入会诱导所得样品的脆-韧转变行为在低SEBS含量下提前发生。增韧机理为,由于β-NAs的加入,PP/SEBS/β-NAs共混物体系中大部分α晶转化为β晶,致使PP晶粒细化,SEBS相尺寸变小、分散更均匀。在外力作用下样品中的SEBS相充当应力集中点,不仅SEBS相内部及SEBS相和PP的界面层会发生空穴化,还会诱导样品中的PP基体发生大量的剪切屈服形变,这些过程会吸收大量能量,赋予PP/SEBS/β-NAs共混物良好的韧性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李姝姝
程鹏飞
马应霞
李广全
关键词:  聚丙烯  增韧  冲击强度  增韧机理    
Abstract: In this work,using polypropylene (PP) as the matrix,hydrogenated styrene-butadiene block copolymer (SEBS) and β nucleating agents (β-NAs) as toughening agents,PP/SEBS/β-NAs blends were prepared by melt blending method. The synergistic toughening effect of SEBS and β-NAs on PP,and the toughening mechanism were investigated. The results showed that the impact strength of the obtained PP/SEBS/β-NAs blends reached 76.1 kJ/m2 at 20% SEBS and 0.05% β-NAs,which was 1 851.3% higher than that of pure PP (3.9 kJ/m2). The synergistic effect of SEBS and β-NAs not only toughened PP,but also improved the processing properties. The addition of β-NAs induced an earlier brittle-tough transition behaviour of the obtained PP/SEBS/β-NAs blends at low SEBS content. The toughening mechanism could be explained that due to the addition of β-NAs,most of the α crystals in the PP/SEBS/β-NAs blends were converted into β crystals,resulting in a finer size of PP grains,smaller size and more uniform dispersion of the SEBS phases. The SEBS phases acted as the stress concentration points,which not only cavitated inside the SEBS phase and the interface layer between the SEBS phase and PP,but also induced a large amount of shear yield deformation of the PP matrix in the sample,and these processes absorbed a large amount of energy,giving the PP/SEBS/β-NAs blends good toughness.
Key words:  polypropylene    toughening    impact strength    toughening mechanism
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TQ325.1+4  
基金资助: 医用聚烯烃系列产品研究开发及工业应用(2018E-19-02)
通讯作者:  *马应霞,兰州理工大学教授。2012 年 6 月毕业于兰州大学,获得理学博士学位。主要从事功能高分子的合成以及有机/无机纳米杂化材料的构筑及其性能研究。主持并完成国家自然科学基金、中国博士后科学基金、甘肃省自然科学基金等科研项目,在 Carbon、 Journal of Hazardous Materials和Journal of Colloid and Interface Science等国内外重要刊物发表学术论文 40 余篇。mayx2011818@163.com
李广全,2009 年毕业于吉林大学化学学院高分子化学与物理专业,获得理学博士学位。2009 年 7 月至今在中国石油天然气股份有限公司石油化工研究院兰州化工研究中心工作,目前担任聚烯烃树脂研究所所长,高级工程师,从事聚烯烃产品开发方面的研究。在《合成树脂》《广州化工》等国内重要刊物发表学术论文30余篇。liguangquan@petrochina.com.cn   
作者简介:  李姝姝,2020 年 9 月于兰州理工大学攻读硕士学位,同时也在中国石油天然气股份有限公司兰州化工研究中心进行联合培养学习。目前主要从事聚丙烯树脂增韧改性研究。
引用本文:    
李姝姝, 程鹏飞, 马应霞, 李广全. SEBS与β-NAs对PP的协同增韧作用及增韧机理研究[J]. 材料导报, 2024, 38(12): 23050100-8.
LI Shushu, CHENG Pengfei, MA Yingxia, LI Guangquan. Synergistic Toughening Effect of SEBS and β-NAs on PP and the Toughening Mechanism. Materials Reports, 2024, 38(12): 23050100-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050100  或          http://www.mater-rep.com/CN/Y2024/V38/I12/23050100
1 Jones A T, Aizlewood J M, Beckett D R. Macromolecular Chemistry and Physics, 1964, 75(1), 134.
2 Zhang Y F. Journal of Polymer Science Part B:Polymer Physics, 2008, 46 (9), 911.
3 Li X L, Wu H Y, Wang Y, et al. Materials Science & Engineering A, 2010, 527(3), 531.
4 Qi R, Tie W A, Tian X Y, et al. China Plastics Industry, 2021, 49(10), 9 (in Chinese).
祁蓉, 铁文安, 田小艳, 等. 塑料工业, 2021, 49(10), 9.
5 Cheng H L. Preparation and properties of synergistic toughening modified polypropylene with β nucleating agent and nano-silica. Master's Thesis, Zhejiang University, 2021.
程亨伦. β成核剂与纳米二氧化硅协同增韧改性聚丙烯的制备及性能. 硕士学位论文, 浙江大学, 2021.
6 Bai H W. Study on synergistic toughening effect of nucleating agent and elastomer on polypropylene. Master's Thesis, Southwest Jiaotong University, 2009.
白红伟. 成核剂与弹性体协同增韧聚丙烯的研究. 硕士学位论文, 西南交通大学, 2009.
7 Fan Q Z, Wu J H, Yang Z Q, et al. Polymers for Advanced Technologies, 2020, 31(3), 508.
8 Zhang P, Liu X, Li Y. Materials Science and Engineering, 2006, 434, 310.
9 Xu L L, Xu K, Zhang X J, et al. Polymers for Advanced Technologies, 2010, 21(11), 807.
10 Jin M, Liu K, Liu H, et al. Polymer Testing, 2014, 39, 1.
11 Redire J S R D, Wang Y L, Wang Z G. Plastics Science and Technology, 2020, 48(05), 117.
娜迪热·加沙热提, 王益龙, 王志高. 塑料科技, 2020, 48(05), 117 (in Chinese).
12 Chen Y D, Wang S, Ji X J. China Adhesives, 2019, 28(03), 39 (in Chinese).
陈永东, 王帅, 纪效均. 中国胶粘剂, 2019, 28(03), 39.
13 Dai Q F, Yin X G, Cui A R, et al. Engtneertng Plasttcs Appltcatton, 2017, 45(04), 108.
代前飞, 尹晓刚, 崔奥然, 等. 工程塑料应用, 2017, 45(04), 108.
14 Ren Q, Zhang Q, Wang L, et al. Industrial & Engineering Chemistry Research, 2017, 56, 5277.
15 Gao X J, Fang H, Yan S D, et al. China Synthetic Resin and Plastics, 2018, 35(4), 42 (in Chinese).
高晓洁, 方辉, 鄢珊丹, 等. 合成树脂及塑料, 2018, 35(4), 42.
16 Shi G Y, Zhang J Y. Chinese Scientific Bulletin, 1981(12), 731 (in Chinese).
史观一, 张景云. 科学通报, 1981(12), 731.
17 Olley R H, Hodge A M, Bassett D C. Journal of Polymer Science Polymer Physics Edition, 1979, 17(4), 627.
18 Qi D, Sun D, Yang C, et al. Polymer Testing, 2019, 75, 185.
19 Zhao S J, Shangguan Y G, Wu Q, et al. Composites Science and Technology, 2021, 207( 9), 108691.
20 Shang M, Wu Y, Shentu B Q, et al. Industrial & Engineering Chemistry Research, 2019, 58, 12650.
[1] 黎涛, 孟威明, 王丁丁, 卫春祥, 鲁红典. 多层结构聚丙烯酰胺水凝胶太阳能蒸发器的制备及性能[J]. 材料导报, 2024, 38(7): 22080085-5.
[2] 韩坤莹, 门汝佳, 郭美卿, 雷志鹏, 王心雨, 王轶飞, 石志杰. Al2O3@SiO2核壳纳米球添加对聚丙烯介电和空间电荷特性的影响[J]. 材料导报, 2024, 38(6): 22050200-7.
[3] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[4] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[5] 周后明, 周金虎, 刘刚, 陈皓月. 金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能[J]. 材料导报, 2024, 38(2): 22040020-5.
[6] 朱刚建, 李文晓. 核壳颗粒增韧改性环氧树脂基体研究评述[J]. 材料导报, 2024, 38(10): 22120066-9.
[7] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[8] 汪晖, 王轲炜, 梁昭. NaCl干湿交替作用对复配水泥活性粉末混凝土性能的影响[J]. 材料导报, 2023, 37(23): 22070005-5.
[9] 秦唯铭, 杜冰, 朱绍伟, 陈立明, 李卫国, 樊振华. 环境温度对长玻纤增强聚丙烯单向拉伸力学性能的影响[J]. 材料导报, 2023, 37(20): 22030014-6.
[10] 张军, 郭乃胜, 吕欣, 褚召阳, 房辰泽. 聚酰胺基树脂型沥青路面浅槽快速修补材料的制备与性能研究[J]. 材料导报, 2023, 37(20): 22050191-7.
[11] 马仁博, 胡焕波, 沈婉婷, 吴唯. 聚丙烯酸丁酯/受阻酚阻尼杂化体系的相容性研究[J]. 材料导报, 2023, 37(15): 21120201-6.
[12] 梁宁慧, 周侃, 兰菲, 刘新荣, 邓志云. 玄武岩-聚丙烯粗纤维混凝土管承载力试验研究[J]. 材料导报, 2023, 37(11): 21100164-8.
[13] 刘忠柱, 赵伟, 潘玮, 李睢水, 郑国强, 李倩. 多壁碳纳米管改性等规聚丙烯复合材料的结构及性能研究[J]. 材料导报, 2023, 37(1): 20100004-6.
[14] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[15] 王艺橦, 潘栋, 侯华兴, 郭庆涛, 李天怡, 厉文墨, 肖玉宝, 江坤. 高能电脉冲处理对金属材料强化和增韧作用影响的研究新进展[J]. 材料导报, 2022, 36(Z1): 21080093-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed