Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 22120066-9    https://doi.org/10.11896/cldb.22120066
  高分子与聚合物基复合材料 |
核壳颗粒增韧改性环氧树脂基体研究评述
朱刚建, 李文晓*
同济大学航空航天与力学学院,上海 200092
A Review of Toughening Epoxy Resin Matrix by Core-Shell Particles
ZHU Gangjian, LI Wenxiao*
School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
下载:  全 文 ( PDF ) ( 14074KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 环氧树脂(EP)具有优异的性能,被广泛应用在涂料、胶黏剂、复合材料等领域,但是其交联密度大,抗裂纹萌生和扩展能力差,因此,EP的增韧改性一直是国内外学者的研究重点。核壳颗粒(CSP)作为第二相加入EP中能达到良好的增韧效果,同时不会引起热力学性能的大幅损失,相较于传统增韧剂有较大的发展前景。本文在阐述EP的不同增韧机理的基础上,介绍了CSP增韧剂的增韧机理、主要类型及制备方法,评述了CSP材料、颗粒粒径、核壳比等因素对EP力学性能影响的研究结果,并分析了使用CSP增韧方法对作为复合材料基体的EP流变行为和固化动力学等工艺性能的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱刚建
李文晓
关键词:  核壳颗粒  环氧树脂  增韧  复合材料    
Abstract: Due to its excellent performance, epoxy resin (EP) is widely used in coatings, adhesives, and composite materials. However, its high crosslinking density and poor ability to resist crack initiation and propagation have made EP toughening modification a hotspot for the global research community. Core-shell particles (CSP) added as a second phase to EP can achieve significant toughening effects without significantly compromising the thermodynamic properties. Compared with traditional toughening agents, CSP has a promising development prospect. Based on an explanation of the different toughening mechanisms of EP, this article introduces the toughening mechanism, main types, and preparation methods of CSP toughening agents. The research results on the effects of CSP material, particle size, and core-shell ratio on the mechanical properties of EP are evaluated, and the impact of using CSP toughening methods on the rheological behavior and curing kinetics of EP as a composite material matrix is analyzed.
Key words:  core-shell particles    epoxy resin    toughness    composite
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  TB332  
基金资助: 国家重点研发计划(2019YFB1505204)
通讯作者:  *李文晓,同济大学航空航天与力学学院副教授、硕士研究生导师。主要从事聚合物基复合材料以及复合材料泡沫夹层结构的设计、制备与性能的研究。发表论文50余篇,获得国家自然科学基金、上海市自然科学基金以及各类基金项目20余项。wenxiaoli@tongji.edu.cn   
作者简介:  朱刚建,2020年6月毕业于同济大学获得工学学士学位,现为同济大学航空航天与力学学院硕士研究生。目前主要研究领域为RTM工艺复合材料的制备。
引用本文:    
朱刚建, 李文晓. 核壳颗粒增韧改性环氧树脂基体研究评述[J]. 材料导报, 2024, 38(10): 22120066-9.
ZHU Gangjian, LI Wenxiao. A Review of Toughening Epoxy Resin Matrix by Core-Shell Particles. Materials Reports, 2024, 38(10): 22120066-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120066  或          http://www.mater-rep.com/CN/Y2024/V38/I10/22120066
1 Robertson I D, Yourdkhani M, Centellas P J, et al. Nature, 2018, 557(7704), 223.
2 Kang Y, Guan J, Numata K, et al. Nature Communications, 2019, 10(1), 3786.
3 Wing T, Ambrose C. Journal of Materials Science, 2019, 54, 13938.
4 Wang L, Tan Y, Wang H, et al. Chemical Physics Letters, 2018, 699, 14.
5 Dong Q, Declan C, Clemence R, et al. Journal of Materials Science, 2017, 52(8), 4493.
6 Giannakopoulos G, Masania K, Taylor A. Journal of Materials Science, 2011, 46(2), 327.
7 Erich D B, Daniel B K, Adam D R, et al. Journal of Materials Science, 2016, 51(5), 2347.
8 Dong Q, Ivankovic A. Polymer, 2015, 66, 16.
9 Zotti A, Zuppolini S, Zarrelli M, et al. Adhesives-Applications and Pro-perties, 2016, 257.
10 Huang Y, Kinloch A J. Journal of Materials Science, 1992, 27(10), 2763.
11 Carolan D, Ivankovic A, Kinloch A J, et al. Polymer, 2016, 97(5), 179.
12 Li S P, Wu Q S, Zhu H J, et al. Polymers, 2017, 9(12), 684.
13 Liu S L, Fan X S, He C B. Composites Science and Technology, 2016, 125, 132.
14 Ning N. Core/shell nanoparticles-their synthesis and use for epoxy resin and carbon fiber composite toughening. Ph. D. Thesis, Donghua University, China, 2022(in Chinese).
宁娜. 纳米核壳粒子的设计制备及其对环氧树脂与碳纤维复合材料增韧机理和性能的研究. 博士学位论文, 东华大学, 2022.
15 Wang Y, Wang Y S. Polymer Materials Science & Engineering, 2012, 28(2), 23(in Chinese).
汪源, 王源升. 高分子材料科学与工程, 2012, 28(2), 23.
16 Xu C, Qu T, Zhang X, et al. RSC Advances, 2019, 9(15), 8654.
17 Lin K F, Shieh Y D. Journal of Applied Polymer Science, 1998, 70(12), 2313.
18 Huang L, Li L J, Li J, et al. Polymer Materials Science & Engineering, 2020, 36(10), 36(in Chinese).
黄力, 李林娟, 李坚, 等. 高分子材料科学与工程, 2020, 36(10), 36.
19 Ren X M. Study on the critical shell thickness of SiO2-PBA core-shell particles with controllable shell thickness in epoxy resin toughening system. Ph. D. Thesis, Hubei University, China, 2017(in Chinese).
任小明. 壳层厚度可控的SiO2-PBA核壳粒子增韧环氧树脂体系临界壳层厚度的研究. 博士学位论文, 湖北大学, 2017.
20 Mahdi M K, Azam J A. Journal of Applied Polymer Science, 2019, 136(4), 46988.
21 Kelnar I, Zhigunov A, Kapr à L, et al. RSC Advances, 2020, 10(19), 11357.
22 Dong Q, Carolan D, Rouge C, et al. International Journal of Adhesion and Adhesives, 2018, 81, 21.
23 Tsang W L, Taylor A C. Journal of Materials Science, 2019, 54(22), 13938.
24 Bajpai A, Martin R, Faria H, et al. Materials Today:Proceedings, 2020, 34(1), 210.
25 Mousavi S R, Amraei I A. High Performance Polymers, 2016, 28(7), 809.
26 Zhu Z W, Chen H X, Chen Q H, et al. Nano Materials Science, 2022, 4(3), 251.
27 Liu J, Thompson Z J, Sue H J, et al. Macromolecules, 2010, 43(17), 7238.
28 George S M, Puglia D, Kenny J M, et al. Industrial & Engineering Chemistry Research, 2013, 52(26), 9121.
29 Ding H, Zhao B J, Mei H G, et al. Polymer Engineering and Science, 2019, 59(11), 2387.
30 Klingler A, Bajpai A, Wetzel B. Engineering Fracture Mechanics, 2018, 203, 81.
31 Lagunas C, Morancho J M, Salla J M, et al. Reactive and Functional Polymers, 2014, 83, 132.
32 Santiago D, Serra A. Polymers, 2022, 14(11), 2228.
33 Foix D, Ramis X, Serra A, et al. Polymer International, 2012, 61(5), 727.
34 Fei X M, Wei W, Tang Y T, et al. European Polymer Journal, 2017, 90, 431.
35 Park H, Choe Y. International Journal of Polymer Science, 2021, 2021, 9984174.
36 Liu Chengwu, Xu Feng, Jiang Zecheng, et al. Materials Today Communications, 2022, 33, 104849.
37 Keller A, Chong H M, Taylor A C, et al. Composites Science and Technology, 2017, 147, 78.
38 Ning N, Liu W, Hu Q, et al. Composites Science and Technology, 2020, 199, 108364.
39 Naveen Thirunavukkarasu, Abdelatif Laroui, Peng Shuqiang, et al. Materials & Design, 2023, 225, 111510.
40 Ning Na, Wang Ming, Zhou Gang, et al. Composites Part B, 2022, 234, 109749.
41 Pramanik M, Fowler E W, Rawlins J W. Journal of Coatings Technology and Research, 2014, 11(2), 143.
42 Dong Q, Ivankovic A. Polymers and Polymer Composites, 2019, 27(10), 168.
[1] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[6] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[7] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[8] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[9] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[10] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[11] 陈悦, 黄静, 朱子旭, 李华东. 面芯脱粘缺陷对复合材料夹芯圆柱壳屈曲特性影响分析[J]. 材料导报, 2024, 38(5): 23070044-6.
[12] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[13] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[14] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[15] 贾宝惠, 任鹏, 宋挺, 崔开心, 肖海建. 湿热环境下端径比对复合材料螺栓连接结构静力拉伸失效的影响[J]. 材料导报, 2024, 38(5): 22100282-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed