Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22030014-6    https://doi.org/10.11896/cldb.22030014
  高分子与聚合物基复合材料 |
环境温度对长玻纤增强聚丙烯单向拉伸力学性能的影响
秦唯铭1, 杜冰2, 朱绍伟1, 陈立明1,*, 李卫国1, 樊振华3
1 重庆大学航空航天学院非均质材料力学重庆市重点实验室,重庆 400030
2 重庆科技学院冶金与材料工程学院纳微复合材料与器件重点实验室,重庆 401331
3 重庆国际复合材料股份有限公司,重庆 400082
Effect of Environment Temperature on Uniaxial Tensile Properties of Long Glass Fiber Reinforced Polypropylene
QIN Weiming1, DU Bing2, ZHU Shaowei1, CHEN Liming1,*, LI Weiguo1, FAN Zhenhua3
1 Chongqing Key Laboratory of Heterogeneous Material Mechanics, College of Aerospace Engineering, Chongqing University, Chongqing 400030, China
2 Chongqing Key Laboratory of Nano-Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
3 Chongqing International Composite Material Co., Ltd., Chongqing 400082, China
下载:  全 文 ( PDF ) ( 17245KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 长玻纤增强聚丙烯(Long glass fiber reinforced polypropylene,LGFPP)作为一种轻质、易回收的新型车用复合材料,同时具有较好的力学性能、耐热性、耐候性。通过不同温度环境下的拉伸试验研究了环境温度对LGFPP力学性能的影响并分析了其失效机理。结果表明:当环境温度为零下20 ℃时,基体对纤维的包裹性较好,有利于载荷传递,破坏表现为基体破坏,断裂面较为平整,其拉伸强度相对室温下提高18.93%;随着温度升高,树脂基体逐渐变软,树脂与纤维之间的界面强度降低,部分表现为纤维与基体的界面破坏,从而减少了纤维承载发生的破坏,从而导致了LGFPP强度降低;当环境温度达到100 ℃时,其拉伸强度相对室温下降低45.84%。建立了LGFPP的均质化RVE模型,预测了不同温度下LGFPP的力学响应和弹性常数,数值模拟结果和理论值与实验结果吻合较好。这为LGFPP在应用环境的耐适性提供了指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦唯铭
杜冰
朱绍伟
陈立明
李卫国
樊振华
关键词:  长玻纤增强聚丙烯  热塑性复合材料  环境温度  力学性能  失效机理    
Abstract: Long glass fiber reinforced polypropylene (LGFPP) is a lightweight, high-strength, and easy-to-recycle new vehicle composite material, and has good mechanical properties, heat resistance and weather resistance. In this work, the effect of ambient temperature on the mechanical properties of LGFPP was studied through tensile tests under different temperature environments and its failure mechanism was analyzed. The results show that the matrix has better encapsulation of the fibers when the ambient temperature is minus 20 ℃, which is conducive to load transmission. The damage is manifested as matrix failure and the fracture surface is relatively flat, and the tensile strength is increased by 18.93% compared with room temperature. As temperature arises, the resin matrix gradually becomes soft, and the interface strength between the resin and the fiber decreases, which is partly manifested as the interface failure between the fiber and the matrix. It reduces the damage of the fiber load, which leads to the decrease of the strength of LGFPP. When the ambient temperature reaches 100 ℃, the tensile strength is 45.84% lower than that at room temperature. The homogenized RVE model of LGFPP was established, and the mechanical response and elastic constants at different temperatures were predicted. The numerical simulation results and theoretical values were in good agreement with the experimental results. It provides guidance for the adaptability of LGFPP in the application environment.
Key words:  long glass fiber reinforced polypropylene    thermoplastic composite    ambient temperature    mechanical property    failure mechanism
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  TB332  
基金资助: 国家自然科学基金(11972096);重庆市自然科学基金(cstc2021ycjh-bgzxm0117)
通讯作者:  *陈立明,重庆大学航空航天学院教授、博士研究生导师、弘深优秀学者,入选教育部青年长江学者、中国科协“青年人才托举工程”和首批重庆英才计划-青年拔尖人才,获得第六届全国基础力学青年教师讲课比赛一等奖、中国力学学会全国徐芝纶力学优秀教师奖和重庆大学十佳优秀青年教师奖。主要从事轻质复合材料结构力学研究,主持包括国家自然科学基金项目(3项)等科研项目20余项,发表SCI期刊论文50余篇,授权国家发明专利4项。clm07@cqu.edu.cn   
作者简介:  秦唯铭,2019年6月于重庆大学航空航天学院获得工学学士学位。现为重庆大学航空航天学院硕士研究生,在陈立明教授的指导下进行研究,目前主要研究领域为热塑性复合材料。
引用本文:    
秦唯铭, 杜冰, 朱绍伟, 陈立明, 李卫国, 樊振华. 环境温度对长玻纤增强聚丙烯单向拉伸力学性能的影响[J]. 材料导报, 2023, 37(20): 22030014-6.
QIN Weiming, DU Bing, ZHU Shaowei, CHEN Liming, LI Weiguo, FAN Zhenhua. Effect of Environment Temperature on Uniaxial Tensile Properties of Long Glass Fiber Reinforced Polypropylene. Materials Reports, 2023, 37(20): 22030014-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030014  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22030014
1 Suffis B. Reinforced Plastics, 2015, 4(59), 199.
2 Gong M, Zhang D J, Liu Y F, et al. Materials Reports, 2020, 34(21), 21180(in Chinese).
龚明, 张代军, 刘燕峰, 等. 材料导报, 2020, 34(21), 21180.
3 Fu L, Zhang M, Zhai Z, et al. Polymer Testing, 2022, 105, 107425.
4 Sun Z, Liu L Y, Liu D B, et al. Compositae Sinica, 2019, 36(4), 771(in Chinese).
孙正, 刘力源, 刘德博, 等. 复合材料学报, 2019, 36(4), 771.
5 Wang C, Zhu L T, Gao X P. Compositae Sinica, 2020, 37(2), 252(in Chinese).
王聪, 竺铝涛, 高晓平. 复合材料学报, 2020, 37(2), 252.
6 Kim D H, Kim H G, Kim H S. Composite Structures, 2015, 131, 742.
7 Dorleans V, Delille R, Notta-Cuvier D, et al. Polymer Testing, 2021, 101, 107287.
8 Bazli M, Ashrafi H, Oskouei A V. Construction and Building Materials, 2017, 148, 429.
9 Hawileh R A, Abu-Obeidah A, Abdalla J A, et al. Construction and Building Materials, 2015, 75, 342.
10 Kodur V K R, Bhatt P P. Composite Structures, 2018, 187, 226.
11 Nair A, Roy S. Composites Science and Technology, 2007, 67, 2592.
12 Surendra K M, Sharma N, Ray B C. Journal of Reinforced Plastics and Composites, 2009, 28(11), 1297.
13 Shindo Y, Takeda T, Narita F. Cryogenics, 2012, 52(10), 564.
14 Naito K, Nagai C. Composite Structures, 2022, 282, 115103.
15 Bai Y, Keller T. Journal of Composite Materials, 2009, 43(21), 2371.
16 Ray B C. Journal of Reinforced Plastics and Composites, 2005, 24, 713.
17 Ray B C. Journal of Reinforced Plastics and Composites, 2006, 25, 329.
18 Carpier Y, Vieille B, Coppalle A, et al. Composites Part B: Engineering, 2020, 181, 107586.
19 Rezaei M, Karatzas V, Berggreen C, et al. Journal of Sandwich Structures & Materials, 2020, 22(4), 1235.
20 Li Y, Li W, Deng Y, et al. Journal of Materials Science, 2018, 53(17), 12190.
21 Chowdhury E U, Eedson R, Bisby L A, et al. Fire Technology, 2011, 47(4), 1063.
22 Correia J R, Gomes M M, Pires J M, et al. Composite Structures, 2013, 98, 303.
23 Gupta M, Wang K K. Polymer Composites, 1993, 14(5), 367.
24 Stelzer P, Reiter M, Major Z. In: Proceedings of the 11th Youth Symposium on Experimental Solid Mechanics. Brasov, Romania, 2012.
25 James E M. Physical properties of polymers handbook, Springer, New York, 2007.
26 Li K, Xiong B, Cao Y. Journal of Applied Polymer Science, 2015, 132(40), 42622.
27 Kong Y, Hay J N. Polymer, 2002, 43(14), 3873.
28 Wang W, Tang L, Qu B. European Polymer Journal, 2003, 39, 2129.
[1] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[2] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[3] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[4] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[5] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[6] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[7] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[8] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[9] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[10] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[11] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[12] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[13] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[14] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[15] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed