Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22030025-5    https://doi.org/10.11896/cldb.22030025
  金属与金属基复合材料 |
Zn中间层对大直径铝/钢连续驱动摩擦焊摩擦扭矩及接头界面微观组织的影响
张昌青1,2,*, 崔国胜2, 陈波阳2, 刘晓2, 王烨2, 史煜2
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
Effect of Zn Interlayer on Friction Torque and Joint Interface Microstructure of Large Diameter Aluminum/Steel Continuous Drive Friction Welding
ZHANG Changqing1,2,*, CUI Guosheng2, CHEN Boyang2, LIU Xiao2, WANG Ye2, SHI Yu2
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 20352KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 大截面铝/钢复合结构件在连续驱动摩擦焊焊接过程中需要长时间的摩擦才能使界面金属从弹塑性转变为粘塑性状态,长时间的摩擦会导致构件焊缝处产生厚且不均匀的脆性Fe-Al金属间化合物,影响接头的整体性能。摩擦焊过程中铝/钢界面的预置中间层相当于物理扩散屏障,阻碍Fe、Al原子的互扩散,抑制脆性Fe-Al金属间化合物的形成。采用钢侧焊接面添加/未添加Zn中间层的Q235低碳钢棒和1060纯铝棒进行连续驱动摩擦焊接,对比分析焊接过程中的摩擦扭矩、温度以及焊后界面微观组织。结果表明:Zn中间层可以降低焊接过程中的初始峰值扭矩和峰值温度,减小中心区域金属间化合物厚度。添加Zn中间层的接头局部最大抗拉强度提高7.8%,平均抗拉强度提高7%。中心区域的Zn中间层在焊接过程中被摩擦压力挤压到外缘,距中心R/2的区域形成韧性较好的Fe2Al5Zn0.4,距中心2R/3的区域存在Zn元素偏聚现象。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张昌青
崔国胜
陈波阳
刘晓
王烨
史煜
关键词:  Zn中间层  大直径铝/钢接头  摩擦扭矩  微观组织    
Abstract: Large section aluminum/steel composite structure usually need a long time of friction to make the interface metal from elastic-plastic state to viscoplastic state in the continuous drive friction welding process. The long time friction will lead to the formation of thick and uneven brittle Fe-Al intermetallic compounds at the weld of components, affecting the overall performance of the joint. The preset interlayer of aluminum/steel interface acts as a physical diffusion barrier in the friction welding process, hindering the mutual diffusion of Fe and Al atoms and inhibiting the formation of brittle Fe-Al intermetallic compounds. In this paper, Q235 low-carbon steel rods with/without Zn interlayer and 1060 pure aluminum rods were welded by continuous drive friction welding. The friction torque, temperature in the welding process and microstructure of interface after welding were analyzed. The experiment results show that the Zn interlayer can reduce the initial peak torque and peak temperature during welding and reduce the intermetallic compound thickness in the central region. The local maximum tensile strength and average tensile strength of the joint with Zn interlayer increases by 7.8% and 7% respectively. The Zn interlayer in the central region is extruded to the outer edge by friction pressure in the welding process, and Fe2Al5Zn0.4 with good toughness is formed in the region of R/2 from the center, and Zn element segregation exists in the region of 2R/3 from the center.
Key words:  Zn interlayer    large diameter aluminum/steel joint    friction torque    microstructure
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  TG456.9  
基金资助: 国家自然科学基金 (51961025)
通讯作者:  *张昌青,兰州理工大学副研究员,硕士研究生导师。1997年获西北工业大学工学学士学位,2007年获兰州理工大学工学硕士学位,2013年获兰州理工大学工学博士学位。在国内外学术期刊上发表论文20余篇,申请国家发明专利10项,其中授权8项。从事先进材料的摩擦焊、钎焊及阻焊等方向的固相连接基础理论与应用技术研究。参加国家自然科学基金项目4项,参加及主持省部基金项目5项。zcq321@sina.com   
引用本文:    
张昌青, 崔国胜, 陈波阳, 刘晓, 王烨, 史煜. Zn中间层对大直径铝/钢连续驱动摩擦焊摩擦扭矩及接头界面微观组织的影响[J]. 材料导报, 2023, 37(20): 22030025-5.
ZHANG Changqing, CUI Guosheng, CHEN Boyang, LIU Xiao, WANG Ye, SHI Yu. Effect of Zn Interlayer on Friction Torque and Joint Interface Microstructure of Large Diameter Aluminum/Steel Continuous Drive Friction Welding. Materials Reports, 2023, 37(20): 22030025-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030025  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22030025
1 Chen Y, Chen S, Li L. Materials & Design, 2010, 31(1), 227.
2 Kuang B, Shen Y, Chen W, et al. Materials & Design, 2015, 68, 54.
3 Zhao H, Cao J, Feng J C. Transactions of the China Welding Institution, 2009(7), 37(in Chinese).
赵贺, 曹健, 冯吉才. 焊接学报, 2009(7), 37.
4 Qin F, Li R, Zhang C B, et al. Materials Reports, 2021, 35(21), 21228(in Chinese).
秦丰, 李睿, 张春波, 等. 材料导报, 2021, 35(21), 21228.
5 Ambroziak A, Korzeniowski M, Kustroń P, et al. Advances in Materials Science and Engineering, 2014, 2014, 1.
6 Meshram S D, Reddy G M. Defence Technology, 2015, 11(3), 292.
7 Reddy M G, Rao S A, Mohandas T. Science & Technology of Welding & Joining, 2013, 13(7), 619.
8 Kannan P, Balamurugan K, Thirunavukkarasu K. The International Journal of Advanced Manufacturing Technology, 2015, 81(9-12), 1743.
9 Zhang X M, Chen Z Y, Luo H F. Materials Reports, 2021, 35(7), 7145(in Chinese).
张先满, 陈再雨, 罗洪峰. 材料导报, 2021, 35(7), 7145.
10 Liu J H, Luo J. International Journal of Plant Engineering and Management, 1997, 3, 41.
11 Kimura M, Seo K, Kusaka M, et al. JSME International Journal Series A Solid Mechanics and Material Engineering, 2003, 46(3), 384.
12 Fukumoto S, Tsubakino H, Okita K, et al. Materials Science and Technology, 1999, 15(9), 1080.
13 Sahin M. Industrial Lubrication & Tribology, 2014, 66(2), 260.
14 Shi Y, Shao L, Huang J K, et al. Rare Metal Materials and Engineering, 2013, 42(S2), 432(in Chinese).
石玗, 邵玲, 黄健康, 等. 稀有金属材料与工程, 2013, 42(S2), 432.
15 Nishimoto K, Harano T, Okumoto Y, et al. Welding International, 2009, 23(11), 817.
[1] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[2] 何承绪, 高洁, 毛航银, 马光, 陈新, 祝志祥, 张一航, 胡卓超. 退火温度对耐热型取向硅钢组织与磁性能的影响[J]. 材料导报, 2023, 37(8): 21090231-5.
[3] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[4] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[5] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[6] 郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
[7] 孙海猛, 牛赢, 焦锋, 王壮飞. 刀具前角对超声复合加工成形切屑组织与性能的影响[J]. 材料导报, 2023, 37(17): 22030291-7.
[8] 丁健翔, 夏欣欣, 张凯歌, 丁宽宽, 马成建, 张培根, 孙正明. 不同制备温度下Ti2SnC增强银基复合材料的物相、微观组织和物理性能演变[J]. 材料导报, 2023, 37(16): 22040006-8.
[9] 黄健康, 吴昊盛, 于晓全, 刘光银, 余淑荣. 钛合金电弧增材制造工艺及微观组织调控的研究现状[J]. 材料导报, 2023, 37(14): 21100070-6.
[10] 黄忠利, 黄健康, 张宏福, 于晓全, 刘光银, 樊丁. 不同脉冲模式下熔滴过渡对铝合金增材微观组织及力学性能的影响[J]. 材料导报, 2023, 37(14): 21100128-5.
[11] 朱万利, 包建勋, 张舸, 崔聪聪. 金刚石/碳化硅复合材料的研究进展[J]. 材料导报, 2023, 37(10): 22100263-8.
[12] 闫丹丹, 单忠德, 臧勇. 多材质混合砂型性能及其对A356铝合金凝固组织的影响研究[J]. 材料导报, 2023, 37(1): 21080212-5.
[13] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[14] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[15] 史天宇, 孔维雄, 陈雨琳, 宁保群, 董治中. 新型高氮马氏体耐热铸钢的热处理及相变解析[J]. 材料导报, 2022, 36(Z1): 20120084-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed