Please wait a minute...
材料导报  2023, Vol. 37 Issue (14): 21100128-5    https://doi.org/10.11896/cldb.21100128
  金属与金属基复合材料 |
不同脉冲模式下熔滴过渡对铝合金增材微观组织及力学性能的影响
黄忠利1, 黄健康1,2,*, 张宏福2, 于晓全1, 刘光银1, 樊丁1,2
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
Effect of Droplet Transfer on the Microstructure and Mechanical Properties of Aluminum Alloy Additive Under Different Pulse Modes
HUANG Zhongli1, HUANG Jiankang1,2,*, ZHANG Hongfu2, YU Xiaoquan1, LIU Guangyin1, FAN Ding1,2
1 State Key Laboratory of Advanced Processing and Reuse of Non-ferrous Metals, Lanzhou University of Techonlogy, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 20552KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用单、双脉冲MIG电弧增材制造工艺制备了铝合金成型件,建立高速摄像以及电信号同步采集系统对增材过程进行实时监测,结合堆垛过程中实时电压、电流信号,对比分析了单、双脉冲MIG工艺的熔滴过渡行为及其对增材件微观组织和力学性能的影响。结果表明,单脉冲与双脉冲熔滴过渡均为一脉一滴,相比于单脉冲大滴模式,双脉冲MIG工艺熔滴过渡频率更高,熔滴尺寸更小,获得的铝合金成型件的精度更高。单脉冲与双脉冲模式下所获得的微观组织存在明显差异,双脉冲MIG工艺中,两层熔合处可获得细化的晶粒,有效地改善了堆垛层的微观组织。对比两种电弧波形的增材件的力学性能,双脉冲MIG增材件的最大抗拉强度可以达到245.57 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄忠利
黄健康
张宏福
于晓全
刘光银
樊丁
关键词:  双脉冲MIG  电弧增材制造  熔滴过渡  微观组织  力学性能    
Abstract: Using single and double pulse MIG arc additive manufacturing process to prepare aluminum alloy forming parts, using high-speed camera and electrical signal synchronization acquisition system to monitor the additive process in real time, combining with real-time voltage and current signals during the stacking process for comparison and analysis. The droplet transfer behavior of single and double pulse MIG process and its influence on the microstructure and mechanical properties of additive parts were discussed. The results show that the droplet transfer of single pulse and double pulse is one droplet transfer with one pulse. Compared with the single pulse large drop mode, the droplet transfer frequency of double pulse MIG process is higher, the droplet size is smaller, and the accuracy of aluminum alloy forming parts is higher. The microstructure obtained by single pulse and double pulse mode is obviously different. In double pulse MIG process, fine grains can be obtained at the fusion of two layers, which effectively improves the microstructure of stacking layer. Comparing the mechanical properties of the two arc waveforms, the maximum tensile strength of the double-pulse MIG additive can reach 245.57 MPa.
Key words:  double pulse MIG    arc additive manufacturing    droplet transfer    microstructure    mechanical property
出版日期:  2023-07-25      发布日期:  2023-07-24
ZTFLH:  TG455  
基金资助: 国家自然科学基金(52175324)
通讯作者:  *黄健康,兰州理工大学材料科学与工程学院教授。2005 年毕业于湘潭大学,2007 年毕业于兰州理工大学获硕士学位,2010年毕业于兰州理工大学获博士学位。目前主要从事电弧增材制造、异种金属连接、焊接物理和焊接过程检测与控制等方面的研究。发表论文200余篇。sr2810@163.com   
作者简介:  黄忠利,2019年7月于沈阳大学获得工学学士学位。现为兰州理工大学材料科学与工程学院硕士研究生,在黄健康教授的指导下进行研究。目前主要研究领域为铝合金增材制造。
引用本文:    
黄忠利, 黄健康, 张宏福, 于晓全, 刘光银, 樊丁. 不同脉冲模式下熔滴过渡对铝合金增材微观组织及力学性能的影响[J]. 材料导报, 2023, 37(14): 21100128-5.
HUANG Zhongli, HUANG Jiankang, ZHANG Hongfu, YU Xiaoquan, LIU Guangyin, FAN Ding. Effect of Droplet Transfer on the Microstructure and Mechanical Properties of Aluminum Alloy Additive Under Different Pulse Modes. Materials Reports, 2023, 37(14): 21100128-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100128  或          http://www.mater-rep.com/CN/Y2023/V37/I14/21100128
1 Kim S, Moon S K. Applied Sciences, 2020, 10(3), 1100.
2 Sinhmar S, Dwivedi D K. Materials Science & Engineering A, 2017, 684, 413.
3 Liu Y, Dong L H, Wang H D, et al. Materials Reports, 2019, 33(21), 3541(in Chinese).
刘颖, 董丽虹, 王海斗. 材料导报, 2019, 33(21), 3541.
4 Chang K, Liang E Q, Zhang R, et al. Materials Reports, 2021, 35(3), 3176(in Chinese).
常坤, 梁恩泉, 张韧, 等. 材料导报, 2021, 35(3), 3176.
5 Karayel E, Bozkurt Y. Journal of Materials Research and Technology, 2020, 9(5), 11424.
6 GmA, Fm A, Hl B, et al. Journal of Nuclear Materials, 2019, 522, 45.
7 Wu B, Pan Z, Ding D, et al. Journal of Manufacturing Processes, 2018, 35, 127.
8 Zhang B, Zhang L, Wang C, et al. Journal of Materials Processing Technology, 2018, 267, 167.
9 Hadadzadeh A, Ghaznavi M M, Kokabi A H. Materials & Design, 2014, 55, 335.
10 Praveen P, Kang M J, Yarlagadda P. Journal of Achievements of Materials and Manufacturing Engineering, 2006, 17(1-2), 391
11 Wang P, Li H, Yu F S, et al. Transactions of the China Welding Institution, 2018, 39(10), 98(in Chinese).
王鹏, 李桓, 于福盛, 等. 焊接学报, 2018, 39(10), 98.
12 Wu W, Xue J X, J L, et al. Transactions of the China Welding Institution, 2019, 40(5), 126(in Chinese).
武威, 薛家祥, 金礼, 等. 焊接学报, 2019, 40(5), 126.
13 Li J, Li H, Huang C, et al. International Journal of Advanced Manufacturing Technology, 2016, 91(1-4), 1058.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[3] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[4] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[5] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[6] 何承绪, 高洁, 毛航银, 马光, 陈新, 祝志祥, 张一航, 胡卓超. 退火温度对耐热型取向硅钢组织与磁性能的影响[J]. 材料导报, 2023, 37(8): 21090231-5.
[7] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[8] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[9] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[10] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[11] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[12] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[13] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[14] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[15] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed