Please wait a minute...
材料导报  2023, Vol. 37 Issue (14): 21100070-6    https://doi.org/10.11896/cldb.21100070
  金属与金属基复合材料 |
钛合金电弧增材制造工艺及微观组织调控的研究现状
黄健康1,*, 吴昊盛1, 于晓全1, 刘光银1, 余淑荣2
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学机电工程学院,兰州 730050
State of the Arc for Titanium Alloy Wire Arc Additive Manufacturing Process and Microstructure Control
HUANG Jiankang1,*, WU Haosheng1, YU Xiaoquan1, LIU Guangyin1, YU Shurong2
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 10532KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钛合金以其高强度、抗高温蠕变、低密度以及良好的生物相容性等性能特点,在航空航天、生物医学等领域得到广泛应用。当使用传统机械加工和铸造工艺制造钛合金构件时,其存在生产工艺复杂、材料利用率低、难以一次成型复杂结构等问题。增材制造(Additive manufacture,AM)作为一种新兴制造技术,因其特有的逐层堆积的工艺特性,在钛合金材料及其复杂构件生产制造方面具有广阔的应用前景。电弧增材制造(Wire arc additive manufacture,WAAM)具有沉积效率高、原材料利用率高、设备成本低等特点,是增材制造工艺中研究最早且应用最成熟的一种工艺。
由于电弧增材制造过程中液态金属凝固速率大,其组织中易出现马氏体、针状α相、魏氏体相,这将极大削弱其力学性能并造成力学性能的各向异性。此外,构件表面粗糙度高、残余应力大、尺寸精度低等缺点也是限制电弧增材制造被广泛应用的重要因素。因此,需要对增材件的微观组织进行调控,并改进电弧增材制造工艺,以提高钛合金构件性能。
当前,钛合金增材件微观组织的调控主要有两种工艺路径:后热处理和实时调控。后热处理是对增材构件进行适当的热处理以改善合金组织,提高钛合金性能。实时调控主要通过添加合金元素的方法进行冶金调控,并且可以生成强化相或细化晶粒。此外,将增材制造与其他辅助工艺相结合,如借助层间冷却、喷丸和超声波冲击处理等工艺,不仅可以细化晶粒,还可以有效地释放残余应力。
本文首先介绍了钛合金电弧增材制造技术的工艺特点,综述了用于制造钛合金零件的几种基本WAAM工艺,并介绍了不同工艺下钛合金的组织及性能,讨论了用于优化钛合金增材制造件的微观结构、提高其力学性能的工艺方法,最后总结了当前几种WAAM工艺的优劣,以及微观组织调控的方法,并展望了WAAM未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄健康
吴昊盛
于晓全
刘光银
余淑荣
关键词:  钛合金  电弧增材制造  微观组织  调控工艺    
Abstract: Titanium alloys have high strength, high temperature creep resistance, low density and good biocompatibility properties, which are widely used in aerospace, biomedicine and other fields. When using traditional machining and casting technologies to produce titanium alloy components, there are some problems such as complex production processes, low production efficiency, and difficult to form a complex structure at one time. Additive manufacturing, as an emerging manufacturing technology, has a wide application prospect in the production of titanium alloy with complex components since its unique layer by layer stacking process. Wire arc additive manufacture (WAAM) has the characteristics of high deposition efficiency, high utilization rate of materials, and low manufacturing cost. It is the earliest and most skillful process in the additive manufacturing.
Due to the high solidification rate of liquid metal in the process of arc additive manufacturing, martensite, widmanstatten, and acicular α phase are easy formed in microstructure, which will greatly weaken the mechanical properties and cause anisotropy of mechanical properties. In addition, components made with WAAM also have disadvantages such as unsatisfactory surface quality, low dimensional accuracy, and large residual stress which limited the application of the WAAM. Therefore, it is necessary to control the microstructure and optimize the process to improve the performance of titanium alloy components.
At present, there are two process methods to control the microstructure of titanium alloy parts:post heat treatment and real-time control. Post-heat treatment is an appropriate heat treatment for additive components to optimize the alloy microstructure and improve the properties of titanium alloy. The real-time control is mainly performed by adding alloy elements. It can also generate strengthening phase or refine grain. In addition, the combination of additive manufacturing and other auxiliary processes, such as interlayer cooling, shot peening, and ultrasonic impact treatment, can not only refine the grain, but also effectively release the residual stress.
This paper first introduces the technological characteristics of titanium alloy arc additive manufacturing technology, summarizes several basic WAAM processes used to manufacture titanium alloy parts, and presents the microstructure and properties of titanium alloys under different processes. Process methods for optimizing the microstructure of titanium alloy parts and improving their mechanical properties are discussed. Finally, it summarizes the advantages and disadvantages of several current WAAM processes, as well as the methods of microstructure control, and looks forward future research focus of WAAM.
Key words:  titanium alloy    wire arc additive manufacture    microstructure    control technology
出版日期:  2023-07-25      发布日期:  2023-07-24
ZTFLH:  TG146.23  
  TG661  
基金资助: 国家自然科学基金(52065040)
通讯作者:  *黄健康,教授,博士研究生导师。2005年本科毕业于湘潭大学获学士学位,2007年毕业于兰州理工大学获硕士学位,2010年毕业于兰州理工大学获博士学位。主要从事电弧增材制造、异种金属连接、焊接物理与焊接过程检测和控制等方面的研究,发表论文300余篇。sr2810@163.com   
引用本文:    
黄健康, 吴昊盛, 于晓全, 刘光银, 余淑荣. 钛合金电弧增材制造工艺及微观组织调控的研究现状[J]. 材料导报, 2023, 37(14): 21100070-6.
HUANG Jiankang, WU Haosheng, YU Xiaoquan, LIU Guangyin, YU Shurong. State of the Arc for Titanium Alloy Wire Arc Additive Manufacturing Process and Microstructure Control. Materials Reports, 2023, 37(14): 21100070-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100070  或          http://www.mater-rep.com/CN/Y2023/V37/I14/21100070
1 Jin H X, Wei K X, Li J M, et al. The Chinese Journal of Nonferrous Metals, 2015, 25(2), 280(in Chinese).
金和喜, 魏克湘, 李建明, 等. 中国有色金属学报, 2015, 25(2), 280.
2 Zhou H Y, Shi X L, Lu G C, et al. Surface and Coatings Technology, 2020, 387, 125552.
3 Yang C, Xu W C, Wan X J, et al. Journal of Plasticity Engineering, 2019, 26(2), 69(in Chinese).
杨川, 徐文臣, 万星杰, 等. 塑性工程学报, 2019, 26(2), 69.
4 Yang Z S. Aviation Precision Manufacturing Technology, 2002, 38(6), 20(in Chinese).
杨尊社. 航空精密制造技术, 2002, 38(6), 20.
5 Wang J, Lin X, Wang M, et al. Materials Science and Engineering A, 2020, 776, 139020.
6 Herzog D, Seyda V, Wycisk E, et al. Acta Materialia, 2016, 117, 371.
7 Li L, Yu Z S, Zhang P L, et al. Transactions of the China Welding Institution, 2018, 39(12), 37 (in Chinese).
李雷, 于治水, 张培磊, 等. 焊接学报, 2018, 39(12), 37.
8 Ou W, Wei Y, Liu R, et al. Journal of Manufacturing Processes, 2020, 53, 84.
9 Szost B A, Terzi S, Martina F, et al. Materials and Design, 2016, 89, 559.
10 Wu S S, Guo C, Liu W M. Modern Manufacturing Technology and Equipment, 2021, 57(3), 2 (in Chinese).
吴随松, 郭纯, 刘武猛. 现代制造技术与装备, 2021, 57(3), 2.
11 Cunningham C R, Flynn J M, Shokrani A, et al. Additive Manufacturing, 2018, 22, 672.
12 Yang H O, Wang J, Wang C, et al. Materials Reports, 2018, 32(12), 2028(in Chinese).
杨海欧, 王健, 王冲, 等. 材料导报, 2018, 32(12), 2028.
13 Barriobero-Vila P, Requena G, Buslaps T, et al. Journal of Alloys and Compounds, 2015, 626, 330.
14 Kumar R, Hynes N R J. International Journal of Lightweight Materials and Manufacture, 2019, 2(3), 193.
15 Malinov S, Sha W, Mckeown J J. Computational Materials Science, 2001, 21(3), 375.
16 He Z, Hu Y, Qu H T, et al. Aerospace Manufacturing Technology, 2016(6), 11(in Chinese).
何智, 胡洋, 曲宏韬, 等. 航天制造技术, 2016(6), 11.
17 Mereddy S, Bermingham M J, Stjohn D H, et al. Journal of Alloys and Compounds, 2017, 695, 2097.
18 Lin Z D, Song K J, Yu X H. Journal of Manufacturing Processes, 2021, 70, 24.
19 Pan Z, Ding D, Wu B, et al. Transactions on Intelligent Welding Manufacturing, DOI:10. 1007/978-981-10-5355-9_1.
20 Baufeld B, Brandl E, Van der Biest O. Journal of Materials Processing Technology, 2011, 211(6), 1146.
21 Baufeld B, Van der Biest O, Gault R. Materials and Design, 2010, 31, S106.
22 Baufeld B, Van der Biest O, Gault R. Science and Technology of Advanced Materials, 2009, 100(11), 1536.
23 Wang F, Williams S, Colegrove P, et al. Metallurgical and Materials Transactions A, 2013, 44(2), 968.
24 Wang F D, Williams S, Rush M. International Journal of Advanced Manufacturing Technology, 2011, 57(5), 597.
25 Aiyiti W, Zhao W, Lu B, et al. Rapid Prototyping Journal, 2006, 12(3), 165.
26 Martina F, Mehnen J, Willians S W, et al. Journal of Materials Processing Technology, 2012, 212(6), 1377.
27 Lin J J, Lv Y H, Liu Y X, et al. Materials and Design, 2016, 102, 30.
28 Spencer J D, Dickens P M, Wykes C M. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 1998, 212(3), 175.
29 Gou J, Shen J, Hu S, et al. Journal of Manufacturing Processes, 2019, 42, 41.
30 Zhang F Q, Chen W G, Tian M J. Rare Metal Materials and Engineering, 2018, 47(6), 6 (in Chinese).
张飞奇, 陈文革, 田美娇. 稀有金属材料与工程, 2018, 47(6), 6.
31 Yin H, Huang R F, Cao H J, et al. China Surface Engineering, 2021, 34(3), 1(in Chinese).
伊浩, 黄如峰, 曹华军, 等. 中国表面工程, 2021, 34(3), 1.
32 Singh S R, Khanna P. Materials Today:Proceedings, 2021, 44, 118.
33 Huang J K, Yuan W, Yu S R, et al. Journal of Manufacturing Processes, 2020, 49, 397.
34 Lin Z, Goulas C, Ya W, et al. Metals, 2019, 9(6), 673.
35 Lin Z, Ya W, Subramanian V V, et al. The International Journal of Advanced Manufacturing Technology, 2020, 111(1), 411.
36 Wilson-Heid A E, Wang Z, Mccornac B, et al. Materials Science and Engineering A, 2017, 706, 287.
37 Liu Y J, Wang H L, Li S J, et al. Acta Materialia, 2017, 126, 58.
38 Colegrove P A, Donoghue J, Martina F, et al. Scripta Materialia, 2017, 135, 111.
39 Wauthle R, Vrancken B, Beynaerts B, et al. Additive Manufacturing, 2015, 5, 77.
40 Baufeld B, Brandl E, Van der Biest O. Journal of Materials Processing Technology, 2011, 211(6), 1146.
41 Wu B, Pan Z, Ding D, et al. Journal of Materials Processing Technology, 2018, 258, 97.
42 Ding D, Wu B, Pan Z, et al. Materials and Manufacturing Processes, 2020, 35(7), 1.
43 Li G, Qu S, Xie M, et al. Surface and Coatings Technology, 2017, 316, 75.
44 Yang Y, Jin X, Liu C, et al. Metals, 2018, 8(11), 934.
45 Gou J, Wang Z, Hu S, et al. Journal of Manufacturing Processes, 2020, 54, 148.
46 Bermingham M J, Kent D, Zhan H, et al. Acta Materialia, 2015, 91, 289.
47 Chen Y, Yang C, Fan C, et al. Materials Letters, 2020, 275, 128170.
48 Gou J, Wang Z, Hu S, et al. Journal of Alloys and Compounds, 2020, 829, 154481.
49 Mereddy S, Bermingham M J, Stjohn D H, et al. Journal of Alloys and Compounds, 2017, 695, 2097.
50 Huang J K, Liu S E, Yu S R, et al. Surface and Coatings Technology, 2020, 381(5), 125141.
51 Huang J K, Chen H Z, Pan W, et al. Materials Today Communications, 2020, 24, 101171.
52 Huang J K, Liu S E, Wu L J, et al. Journal of Alloys and Compounds, 2021, 857, 157557.
[1] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[2] 何承绪, 高洁, 毛航银, 马光, 陈新, 祝志祥, 张一航, 胡卓超. 退火温度对耐热型取向硅钢组织与磁性能的影响[J]. 材料导报, 2023, 37(8): 21090231-5.
[3] 谭钦文, 邓黎鹏, 易润华, 程东海, 李东阳. Ni中间层镁/钛异种材料电阻点焊接头组织与性能[J]. 材料导报, 2023, 37(7): 21090077-4.
[4] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[5] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[6] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[7] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[8] 郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
[9] 黄忠利, 黄健康, 张宏福, 于晓全, 刘光银, 樊丁. 不同脉冲模式下熔滴过渡对铝合金增材微观组织及力学性能的影响[J]. 材料导报, 2023, 37(14): 21100128-5.
[10] 颉芳霞, 黄家兵, 曹澍, 杨豪, 何雪明. 钛合金羟基磷灰石骨植入复合材料的研究进展[J]. 材料导报, 2023, 37(13): 21070222-7.
[11] 朱万利, 包建勋, 张舸, 崔聪聪. 金刚石/碳化硅复合材料的研究进展[J]. 材料导报, 2023, 37(10): 22100263-8.
[12] 方乃文, 黄瑞生, 武鹏博, 尹立孟, 龙伟民, 徐锴, 曹浩, 邹吉鹏. 钛合金窄间隙激光填丝焊接工艺及接头组织性能分析[J]. 材料导报, 2023, 37(10): 22010253-1.
[13] 闫丹丹, 单忠德, 臧勇. 多材质混合砂型性能及其对A356铝合金凝固组织的影响研究[J]. 材料导报, 2023, 37(1): 21080212-5.
[14] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[15] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed