Please wait a minute...
材料导报  2023, Vol. 37 Issue (14): 21100038-16    https://doi.org/10.11896/cldb.21100038
  金属与金属基复合材料 |
铁氮化工艺、氮化铁的性质及氧化行为的研究现状与展望
刘嘉琴, 王晓方, 刘柯钊*
表面物理与化学重点实验室,四川 绵阳 621908
Research Status and Prospect of Iron Nitriding Techniques, Properties and Oxidation Behavior of Iron Nitrides
LIU Jiaqin, WANG Xiaofang, LIU Kezhao*
Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, Sichuan, China
下载:  全 文 ( PDF ) ( 5786KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氮化铁作为一种典型的填隙合金,具有较为丰富的相结构、优良的抗腐蚀性及耐磨性、高的热稳定性,在铁及其合金的表面腐蚀防护领域具有重要的应用价值。本文系统地综述了铁表面氮化工艺的方法、工艺原理以及不同技术的优缺点,同时归纳了氮化铁薄膜材料的制备技术,包括气相沉积法、溅射法以及分子束外延法,并详细介绍了氮化铁的物相结构及其转化规律,最后重点对氮化铁的氧化行为及氧化模型研究进展进行总结,以期为氮化铁的实验研究和腐蚀防护应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘嘉琴
王晓方
刘柯钊
关键词:  氮化铁  氮化工艺  氧化行为  动力学模型    
Abstract: Iron nitrides with rich structures have attracted wide attention in the field of material surface corrosion protection due to their high thermal stability, excellent corrosion resistance and wear resistance. In this paper, the nitridation processing techniques and the related studies on the formation mechanism of the nitride layers, as well as the advantages and disadvantages of different technologies are systematically reviewed. At the same time, the preparation technologies of iron nitrides film materials, including vapor deposition, sputtering and molecular beam epitaxy, are summarized. Then the phase structure and its transition behavior are introduced in detail. Finally, the research progress of oxidation behavior and kinetic model of iron nitride are summarized in order to provide reference for experimental research and corrosion protection application of iron nitrides.
Key words:  iron nitrides    nitriding technology    oxidation behavior    kinetic model
出版日期:  2023-07-25      发布日期:  2023-07-24
ZTFLH:  TG174.4  
基金资助: 国家自然科学基金(22172148)
通讯作者:  *刘柯钊,现任中国工程物理研究院材料研究所副所长、核燃料循环与材料领域教授、博士研究生导师,核学会光化材料分会常务副理事。1990年7月本科毕业于浙江大学材料科学专业,一直工作于中国工程物理研究院材料研究所。2000—2001年,日本静冈大学访问学者,2013年获浙江大学材料学专业工学博士学位。2004年,被选举为四川省学术人才后备人选。2011年被评为四川省有突出贡献的优秀专家。2012年,他被授予享受政府特殊津贴的专家称号。一直从事高温超导材料应用、铀合金表面性能、表面涂层技术和锕系元素(如铀及其合金)表面改性技术领域的基础研究和工程技术开发。近年来,主持了多项国防研究项目,发表了40篇科学论文。曾获军事科技进步一等奖4项、军事科技进步二等奖6项、军事科技进步一等奖6项。liukezhaosaf@163.com   
作者简介:  刘嘉琴,2020年6月毕业于华东师范大学,获得理学硕士学位。现为中国工程物理研究院材料研究所博士研究生,在刘柯钊教授的指导下进行研究。目前主要研究领域为金属的腐蚀与防护。
引用本文:    
刘嘉琴, 王晓方, 刘柯钊. 铁氮化工艺、氮化铁的性质及氧化行为的研究现状与展望[J]. 材料导报, 2023, 37(14): 21100038-16.
LIU Jiaqin, WANG Xiaofang, LIU Kezhao. Research Status and Prospect of Iron Nitriding Techniques, Properties and Oxidation Behavior of Iron Nitrides. Materials Reports, 2023, 37(14): 21100038-16.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100038  或          http://www.mater-rep.com/CN/Y2023/V37/I14/21100038
1 Zherebtsov S, Naoe T, Futakawa M, et al. Surface and Coatings Technology, 2007, 201, 6035.
2 Funatani K. Metal Science & Heat Treatment, 2004, 46, 277.
3 Hendry A. Corrosion Science, 1978, 18, 555.
4 Coates D J, Mortimer B, Hendry A. Corrosion Science, 1982, 22, 951.
5 Shen B. Preparation and diamond and ultra-precision cutting of iron nitride materials. Master’s Thesis, Northeastern University, China, 2014 (in Chinese).
申波. 氮化铁材料的制备和金刚石超精密切削研究. 硕士学位论文, 东北大学, 2014.
6 Chen C Z, Leng Y X, Sun H, et al. Journal of Materials Engineering, 2008, 298(3), 67(in Chinese).
陈畅子, 冷永祥, 孙鸿, 等. 材料工程, 2008, 298(3), 67.
7 Zhang Z S, He B L, Xu X F. Hot Working Technology, 2017, 46(4), 17(in Chinese).
张枝森, 何柏林, 徐先锋. 热加工工艺, 2017, 46(4), 17.
8 Tong W P, Tao N R, Wang Z B, et al. Science, 2003, 299, 686.
9 Wang J, Zhang G, Sun J, et al. Surface & Coatings Technology, 2006, 200(24), 6666.
10 Kermouche G, More C, Lacaille V, et al. Applied Surface Science, 2017, 414, 73.
11 Tsujimura H, Goto T, Ito Y. Electrochimica Acta, 2003, 47(15), 2725.
12 Abbasalizadeh A, Seetharaman S, Teng L, et al. Metals & Materials Society, 2013, 65(11), 1552.
13 Tsujimura H, Goto T, Ito Y. Journal of Alloys and Compounds, 2004, 376 (1-2), 246.
14 Ortiz-Domínguez M, Gómez-Vargas O A, Simón-Marmolejo I, et al. Microscopy & Microanalysis, 2018, 24(S1), 1076.
15 Li K Y, Xiang Z D. Surface and Coatings Technology, 2010, 204(14), 2268.
16 Zeng D, Yang S, Xiang Z D. Applied Surface Science, 2012, 258(12), 5175.
17 Miola E J, Souza S, Olzon-Dionysio M, et al. Physica Status Solidi (B), 2002, 231(2), 385.
18 Sahara M, Sato T, Ito S, et al. Materials Chemistry & Physics, 1998, 54(1-3), 123.
19 Zhan R J, Wang C, Wen X, et al. Surface & Coatings Technology, 1998, 105(1-2), 72.
20 Li G Y, Wang Z Y, Chen L, et al. Heat Treatment of Metals, 2013, 38(2), 9 (in Chinese).
李广宇, 王中一, 陈琳, 等. 金属热处理, 2013, 38(2), 9.
21 Zhang D D, Wang A P, Liu Z Q, et al. Hot Working Technology, 2021, 50(4), 138(in Chinese).
张丹丹, 王安平, 刘作庆, 等. 热加工工艺, 2021, 50(4), 138.
22 Jasinski J J, Kurpaska L, Fraczek T, et al. Metals-Open Access Metallurgy Journal, 2020, 10(12), 1656.
23 Ribeiro K J B, Mendes M W D, de Sousa R M R, et al. Materials Science & Engineering A, 2007, 465, 223.
24 Teresa M, Arvaidas G. Metallurgical & Materials Transactions A, 2015, 46(12), 5588.
25 Tamaki M, Tomii Y, Yamamoto N. Plasmas & Ions, 2000, 3, 33.
26 Kumar S, Baldwin M J, Fewell M P, et al. Surface & Coatings Technology, 2000, 123(1), 29.
27 Li S L, Ma C Y, Zhang Q Y, et al. Surface and Coatings Technology, 2016, 309, 47.
28 Gupta P A, Fiedler H, Rubanov S, et al. Journal of Magnetism and Magnetic Materials, 2020, 517, 167388.
29 Long Z. Study on the surface modification of uranium metal by plasma immersion ion implantation nitriding. Master’s Thesis, China Academy of Engineering Physics, China, 2008(in Chinese).
龙重. 金属铀表面全方位离子注入氮化改性研究. 硕士学位论文, 中国工程物理研究院, 2008.
30 Liu H, Tang B, Wang L, et al. Surface & Coatings Technology, 2007, 201(9), 5273.
31 Ranjan M, Mukherjee S, Rane R, et al. Surface & Coatings Technology, 2007, 201(15), 6502.
32 Saravanan P, Raja V S, Mukherjee S. Surface & Coatings Technology, 2007, 201(19), 8131.
33 Manova D, Hirsch D, Richter E, et al. Surface & Coatings Technology, 2007, 201(19), 8329.
34 Chen C Z, Shi X H, Zhang P C, et al. Solid State Ionics, 2008, 179(21), 971.
35 Bao J J, Leng Y X, Su Y Y, et al. Surface & Coatings Technology, 2011, 206(5), 943.
36 Hche D, Schaaf P. Heat and Mass Transfer, 2011, 47(5), 519.
37 Fan Y, Zhang C H, Liu A M, et al. Science and Technology Innovation Herald, 2015, 12(8), 35(in Chinese).
樊宇, 张翀昊, 柳岸敏, 等. 科技创新导报, 2015,12(8), 35.
38 Ogale S B, Patil P P, Roorda S, et al. Applied Physics Letters, 1987, 50(25), 1802.
39 Han M, Lieb K P, Carpene E, et al. Journal of Applied Physics, 2003, 93(9), 5742.
40 Illgner C, Lieb K P, Schaaf P, et al. Applied Physics A, 1996, 62(3), 231.
41 Landry F, Lieb K P, Schaaf P. Nuclear Instruments & Methods in Physics Research B:Beam Interactions with Materials and Atoms, 2000, 161-163, 609.
42 Yang Y L, Liu C S, Sun F J, et al. Acta Metallurgica Sinica(English Letters), 2005, 18(4), 533.
43 Yilbas B S, Arif A F M, Karatas C, et al. The International Journal of Advanced Manufacturing Technology, 2010, 49(9), 1009.
44 Yang Y L, Sun F J, Zhang D. Acta Metallurgica Sinica, 2003, 16(2), 139.
45 Sun F, Liu J, Yang Y, et al. Materials Science & Engineering B, 2005, 122(1), 29.
46 Liu J Y, Sun F J, Yu H J, et al. Chinese Journals of Laser, 2005, 32(11), 1577(in Chinese).
刘军友, 孙凤久, 于撼江, 等. 中国激光, 2005, 32(11), 1577.
47 Liu J Y, Sun F J, Yu H J, et al. Current Applied Physics, 2008, 8(2), 212.
48 Liu J Y, Sun F J, Yu H J. Applied Surface Science, 2005, 252(4), 921.
49 Kim T K. Applied Physics Letters, 1972, 20(12), 492.
50 Roberson S L, Finello D, Banks D A, et al. Thin Solid Films, 1998, 326(1), 47.
51 Takahashi T, Takahashi N, Tamura N, et al. Journal of Materials Che-mistry, 2001, 11(12), 3154.
52 Lei X. Study of transition metals doped iron nitride magnetic nanomate-rials. Ph. D. Thesis, Jilin University, China, 2018(in Chinese).
雷翔. 过渡金属掺杂的氮化铁磁性纳米材料研究. 博士学位论文, 吉林大学, 2018.
53 Nikolaev K R, Krivorotov I N, Dahlberg E D, et al. Applied Physics Letters, 2003, 82(25), 4534.
54 Chen Y F, Jiang E Y, Li Z Q, et al. Journal of Physics D Applied Phy-sics, 2004 37(10), 1429.
55 Feng X P. Structure, magnetic properties and magnetoresistance of γ′-Fe4N films. Master’s Thesis, Tianjin University, China, 2012(in Chinese).
封秀平. γ′-Fe4N薄膜的结构、磁性和磁电阻效应. 硕士学位论文, 天津大学, 2012.
56 Wang L L, Zheng W T, Gong J, et al. Journal of Alloys & Compounds, 2009, 467(1), 1.
57 Sun D C, Jiang E Y, Tian M B, et al. Journal of Applied Physics, 1996, 79(8), 5440.
58 Goelden D, Hildebrandt E, Alff L. Journal of Magnetism and Magnetic Materials, 2017, 422, 407.
59 Lin W, Pak J, Ingram D C, et al. Journal of Alloys & Compounds, 2008, 463(1), 257.
60 Frtczak E Z, Prieto J E, Moneta M E G. Journal of Alloys and Compounds, 2014, 586, 375.
61 Liapina T, Leineweber A, Mittemeijer E J. Metallurgical & Materials Transactions A, 2006, 37(2), 319.
62 Miola E J, Souza S D D, Nascente P A P, et al. Applied Surface Science, 1999, 144-145, 272.
63 Gontijo L C, Machado R, Miola E J, et al. Surface & Coatings Technology, 2004, 183, 10.
64 Jack K H. Acta Crystallographica, 1952, 5(4), 404.
65 Gallego J M. Physical Review B, 2004, 70(11), 115417.
66 Coehoorn R, Daalderop G H O, Jansen H J F. Physical Review B:Condensed Matter, 1993, 48(6), 3830.
67 Li Z W, Morrish A H, Ortiz C. Journal of Materials Science, 2001, 36(24), 5835.
68 Na Y Y, Cong W, Xiang J Z, et al. Journal of Crystal Growth, 2015, 426, 117.
69 Zachwieja H J R. Journal of Alloys and Compounds, 1995, 227(15), 10.
70 Sifkovits M, Smolinski H, Hellwig S, et al. Journal of Magnetism and Magnetic Materials, 1999, 204(3), 191.
71 Jouanny I, Weisbecker P, Demange V, et al. Thin Solid Films, 2010, 518(9), 1883.
72 Jack K H. Journal of Alloys and Compounds, 1995, 222(1-2), 160.
73 Sugita Y, Mitsuoka K, Komuro M, et al. Journal of Applied Physics, 1991, 70(10), 5977.
74 Jiang H, Tao K, Li H. Journal of Physics Condensed Matter, 1994, 6(18), 279.
75 Brewer M A, Echer C J, Krishnan K M, et al. Journal of Applied Physics, 1997, 81(8), 4128.
76 Abdellateef M A, Heiden C, Lemke H, et al. Journal of Magnetism and Magnetic Materials, 2003, 256(1-3), 214.
77 Weber T, De Wit L, Saris F W, et al. Thin Solid Films, 1996, 279(1), 216.
78 Nakajima K, Yamashita T, Takata M, et al. Journal of Applied Physics, 1991, 70, 6033.
79 Nakajima K, Okamoto S. Applied Physics Letters, 1989, 54(25), 2536.
80 Navio C, Alvarez J, Capitan M J, et al. Physical Review B, 2007, 75(12), 125422.
81 Mi W B, Guo Z B, Feng P X, et al. Acta Materialia, 2013, 61(17), 6387.
82 Wang L L, Wang X, Ma N, et al. Surface and Coatings Technology, 2006, 201(3-4), 786.
83 Wang L L, Wang X, Zheng W T, et al. Materials Chemistry & Physics, 2006, 100(2-3), 304.
84 Ito K, Lee G H, Suemasu T. Journal of Physics Conference Series, 2011, 266, 012091.
85 Tao Z, Liu S, Fang H, et al. Materials Letters, 2018, 239, 140.
86 Zhou G Q, Lian F Z, Gao Q. Metallic Functional Materials, 1998, 5(4), 14(in Chinese).
周桂琴, 连法增, 高强. 金属功能材料, 1998, 5(4), 14.
87 Utsushikawa Y, Niizuma K. Journal of Alloys & Compounds, 1995, 222, 188.
88 Zheng J, Yang R, Chen W M, et al. Journal of Physics D:Applied Physics, 2009, 42, 185209.
89 Niederdrenk M, Schaaf P, Lieb K P, et al. Journal of Alloys and Compounds, 1996, 237, 81.
90 Nakagawa H, Nasu S, Fujii H, et al. Hyperfine Interactions, 1992, 69, 455.
91 Suzuki K, Morita H, Kaneko T, et al. Journal of Alloys and Compounds, 1993, 201, 11.
92 Ma Z, Li Z, Zeng Y, et al. Journal of Power Sources, 2019, 423, 159.
93 Gupta M, Gupta A, Bhattacharya P, et al. Journal of Alloys & Compounds, 2001, 326(1-2), 265.
94 Andrzejewska E, Gonzalez-Arrabal R, Borsa D, et al. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2006, 249(1-2), 838.
95 Navio C, Alvarez J, Capitan M J, et al. Physical Review, 2008, 78, 877.
96 Lin W, Pak J, Ingram D C. Journal of Alloys & Compounds, 2008, 463(1-2), 257.
97 Oueldennaoua A, Bauer-Grosse E, Foos M, et al. Scripta Metallurgica, 1985, 19(12), 1503.
98 Zhang P. Magnetism and application of Fe3N 和 Fe4N composites prepared from organic nitrogen source. Ph. D. Thesis, Jilin University, Chian, 2018(in Chinese).
张鹏. 有机氮源制备的Fe3N和Fe4N复合材料磁性和应用. 博士学位论文, 吉林大学, 2018.
99 Zhang D M. Study on preparation, structures and physical properties of iron mononitride epitaxial thin films. Master’s Thesis, Hebei Normal University, China, 2020 (in Chinese).
张东民. FeN外延薄膜的制备、结构和物性研究. 硕士学位论文, 河北师范大学, 2020.
100 Kong Y. Journal of Physics Condensed Matter, 2000, 12(18), 4161.
101 Lu Q H, Tang X L, Song Y Z, et al. Acta Physica Sinica, 2019, 68(11), 118101(in Chinese).
卢启海, 唐晓莉, 宋玉哲, 等. 物理学报, 2019, 68(11), 118101.
102 Chen T, Castanon E, Gigax J G, et al. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2019, 451, 10.
103 Han M, Carpene E, Landry F, et al, Journal of Applied Physics, 2001, 89(8), 4619.
104 Carpene E, Landry F, Han M, et al. Hyperfine Interactions, 2002, 139-140(1), 355.
105 Cocke D L, Jurcik-Rajman M, Veprek S. Cheminform, 1989, 136(12), 3655.
106 Gabrielli C, Keddam M, Stupnisek-Lisac E, et al. Electrochimica Acta, 1976, 21(10), 757.
107 Barr T L. Chemischer Informationsdienst, 1978, 82(16), 1801.
108 Somers M A J, Mittemeijer E J. Metallurgical Transactions A, 1990, 2(3), 901.
109 Jutte R H, Kooi B J, Somers M A J. Oxidation of Metals, 1997, 48(1-2), 87.
110 Borsa D M, Boerma D O. Hyperfine Interactions, 2003, 151, 31.
111 Mijiritskii A V, Boerma D O. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 2000, 18(4), 1254.
112 Graat P C J, Somers M A J, Mittemeijer E J. Applied Surface Science, 1998, 136(3), 238.
113 Kooi B J, Somers M A J, Mittemeijer E J. Thin Solid Films, 1996, 281-282 (1), 488.
114 Fromhold A T, Cook E L. Physical Review, 1967, 158(3), 600.
115 Fromhold A T, Cook E L. Physical Review, 1967, 163(3), 650.
116 Graat P, Somers M A J, Mittemeijer E J. Ztschrift Fur Metallkunde, 2002, 93(6), 532.
117 Fromhold A T, Cook E L. Journal of Applied Physics, 1967, 38(4), 1546.
118 Simmons J G. Journal of Applied Physics, 1963, 34(9), 2581.
119 Stratton R. Journal of Physics & Chemistry of Solids, 1962, 23(9), 1177.
120 Graata P, Somers M A J, Mittemeijera E J. Thin Solid Films, 1999, 353(1-2), 72.
121 Schubert T, Oettel H, Bergner D. Harterei-Technische Mitteilungen, 1987, 42, 332.
122 Leibbrandt G W R, Hoogers G, Habraken F H P M. Physical Review Letters, 1992, 68(1-12), 1947.
123 Graat P, Somers M A J, Vredenberg A M, et al. Journal of Applied Physics, 1997, 82(3), 1416.
124 Leibbrandt G, Spiekman L H, Habraken F. Surface Science, 1993, 287-288(1), 250.
125 Smeltzer W W, Young D J. Progress in Solid State Chemistry, 1975, 10, 17.
126 Graat P, Zandbergen H W, Somers M A J, et al. Oxidation of Metals, 2000, 53(1-2), 221.
127 Voogt F C, Hibma T, Smulders P, et al. Journal of Crystal Growth, 1997, 174(1-4), 440.
128 Zlatanovi M, Popovi N, Bogdanov, et al. Surface & Coatings Technology, 2003, 174(2), 1220.
129 Jeon E K, Park I M, Lee I. Materials Science & Engineering A, 2007, 449-451, 868.
130 Sun Y. Heat Treatment of Metals, 2002, 29(1), 15.
131 Alsaran A, Altun H, Karakan M, et al. Surface & Coatings Technology, 2003, 176(3), 344.
132 Shen H, Wang L. Journal of Alloys and Compounds, 2019, 806, 1517.
133 Zlatanovi M, Popovi N, Bogdanov, et al. Surface & Coatings Technology, 2004, 177-178, 277.
134 Yasavol N, Mahboubi F. Materials & Design, 2012, 38, 59.
135 Rovani A C, Crespi A E, Sonda V, et al. Surface and Coatings Technology, 2011, 205(11), 3422.
136 Mahboubi F, Fattah M. Vacuum, 2005, 79(1-2), 1.
137 Chen R Y, Yeun W. Oxidation of Metals, 2003, 59(5), 433.
138 Ebrahimi M, Sohi M H, Raouf A H, et al. Surface and Coatings Technology, 2010, 205, S261.
139 Hong J M, Cho Y R, Kim D J, et al. Surface & Coatings Technology, 2000, 131(1), 547.
140 Haruman E, Bell T, Sun Y. Surface Engineering, 1992, 8(4), 275.
141 Howse H J, Pistorius P. Surface Engineering, 2013, 15(6), 476.
142 Kou H L, Nam K S, Shin P W, et al. Materials Letters, 2003, 57(13-14), 2060.
143 Lee I. Surface & Coatings Technology, 2004, 188(1), 669.
144 Wu J, Liu H, Ye X, et al. Journal of Alloys & Compounds, 2015, 632, 397.
145 Surman P L. Corrosion Science, 1973, 13(2), 113.
146 Karimzadeh N, Moghaddam E G, Mirjani M, et al. Applied Surface Science, 2013, 283, 584.
147 Rovani A C, Fischer R R, Cemin F, et al. Scripta Materialia, 2010, 62, 863.
148 Yang L, Liang W, Zhang D, et al. Applied Surface Science, 2010, 256(13), 4149.
149 Borgioli F, Galvanetto E, Fossati A, et al. Surface and Coatings Technology, 2003, 162(1), 61.
150 Díaz-Guillén J, Vargas-Gutiérrez G, Granda-Gutiérrez E, et al. International Journal of Electrochemical Science, 2012, 7, 7261.
151 Esfahani A, Sohi M H, Rassizadehghani J, et al. Vacuum, 2007, 82(3), 346.
[1] 杜金亮, 杨丽娜, 冯运莉, 李杰, 刘国龙, 吝冉. 温轧40CrMo中厚钢板在退火过程中铁素体与碳化物的协同演变规律[J]. 材料导报, 2023, 37(8): 21070164-3.
[2] 张琪, 冯攀, 王浩川, 邵丽静, 叶少雄, 冉千平. 混凝土中微波型主动控释胶囊的制备及释放行为[J]. 材料导报, 2022, 36(4): 20100262-7.
[3] 郭丽萍, 费香鹏, 曹园章, 薛晓丽, 丁聪. 氯离子与硫酸根离子在水化硅酸钙表面竞争吸附的分子动力学研究[J]. 材料导报, 2021, 35(8): 8034-8041.
[4] 胡聪, 应国兵, 刘璐, 孙铖, 文栋, 张建峰, 张晨, 王香, 王乘. 放电等离子烧结制备高纯Ta2AlC陶瓷及其高温氧化行为[J]. 材料导报, 2021, 35(12): 12044-12048.
[5] 金泽康, 张旋, 李敏, 钱春香. 微生物自修复混凝土裂缝自修复动力学模型[J]. 材料导报, 2020, 34(Z2): 194-200.
[6] 韩志勇, 史文新, 王者, 丁坤英, 程涛涛. HCPEB表面改性对镀铝CoCrAlY涂层显微组织及氧化性能的影响[J]. 材料导报, 2019, 33(14): 2392-2396.
[7] 于江, 程龙, 李林萍, 叶奋, 宋卿卿. KSHD温拌剂对新疆岩沥青改性沥青老化动力特性的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2418-2424.
[8] 孙宇, 周琛, 万志鹏, 任丽丽, 胡连喜. 金属材料动态再结晶模型研究现状*[J]. 《材料导报》期刊社, 2017, 31(13): 12-16.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed