Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 20100262-7    https://doi.org/10.11896/cldb.20100262
  无机非金属及其复合材料 |
混凝土中微波型主动控释胶囊的制备及释放行为
张琪1, 冯攀1,2,*, 王浩川1, 邵丽静1, 叶少雄1, 冉千平1,2
1 东南大学材料科学与工程学院,江苏省土木工程材料重点实验室,南京 211189
2 高性能土木工程材料国家重点实验室,南京 210008
Preparation and Release Behavior of Microwave Active Controlled Release Capsule in Concrete
ZHANG Qi1, FENG Pan1,2,*, WANG Haochuan1, SHAO Lijing1, YE Shaoxiong1, RAN Qianping1,2
1 Jiangsu Key Laboratory of Construction Materials,School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2 State Key Laboratory of High Performance Civil Engineering Materials, Nanjing 210008, China
下载:  全 文 ( PDF ) ( 5841KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 设计并制备了一种混凝土主动控释胶囊,该胶囊能够在微波信号刺激下主动控制释放内部装载的芯材外加剂。采用扫描电镜、X-射线断层扫描仪、电位滴定仪对胶囊及其释放行为进行表征,通过释放动力学模型拟合和极差与方差分析,探讨了胶囊的释放机制和释放率的影响因素。结果表明:胶囊的平均装载能力为34.71%;施加微波后产生响应可缓慢持续释放芯材,释放机制主要为芯材分布于多孔载体孔隙中的Fick扩散机制;各影响因素对释放率的影响程度为:微波功率>微波处理时间>石蜡厚度>Fe3O4掺量;初步证明了胶囊在砂浆中具有微波主动控制释放的性能。该胶囊的应用有望解决直掺外加剂产生的负面效果以及混凝土硬化后其性能难以改善等问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张琪
冯攀
王浩川
邵丽静
叶少雄
冉千平
关键词:  胶囊  微波  主动控制释放  释放动力学模型    
Abstract: Akind of concrete-based active controlled release capsule was designed and prepared. The capsule can release the core material actively under the stimulation of microwave signal. Capsule and its release behavior were characterized by scanning electron microscopy, X-ray computed tomography and potentiometric titration. The release mechanism and influencing factors of release ratio were discussed by fitting the release kinetics model and analyzing the range and variance. The results show that the average loading capacity of the capsule is 34.71%; the core material can be released slowly and continuously after the microwave is applied; the release mechanism is mainly Fick diffusion mechanism with core materials distributed in the pores of porous carrier; the influence degree of each influencing factor on the release ratio is microwave power > microwave treatment time>paraffin thickness>Fe3O4 content; it is preliminarily proved that the capsule has the property of microwave active control release in mortar. The application of the capsule is expected to solve the negative effects of direct admixtures and the difficulty in improving the properties of concrete after hardening.
Key words:  capsule    microwave    active control release    release kinetics model
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51890904;52078126);高性能土木工程材料国家重点实验室开放基金(2018CEM001)
通讯作者:  pan.feng@seu.edu.cn   
作者简介:  张琪,2020年6月毕业于东南大学,获工学学士学位,现为东南大学材料科学与工程学院在读硕士研究生,指导教师缪昌文院士、冯攀副教授。主要研究课题为混凝土中外加剂的主动控制释放。
冯攀,东南大学材料科学与工程学院,副研究员、硕士生导师,东南大学超材料研究所副主任,东南大学至善学者。先后在东南大学、美国标准与技术研究院材料与结构研究所攻读博士与博士后;2015年7月毕业于东南大学,获材料学博士学位;2016年就职于东南大学。主要从事水泥基材料微结构调控机理、水泥水化机理及调控方法、有机-无机复合功能材料的研究。曾获得美国标准与技术研究院最佳访问学者奖和《美国硅酸盐学报》最佳论文奖。发表SCI论文30余篇,其中第一作者与通讯作者论文22篇,申报发明专利8项。
引用本文:    
张琪, 冯攀, 王浩川, 邵丽静, 叶少雄, 冉千平. 混凝土中微波型主动控释胶囊的制备及释放行为[J]. 材料导报, 2022, 36(4): 20100262-7.
ZHANG Qi, FENG Pan, WANG Haochuan, SHAO Lijing, YE Shaoxiong, RAN Qianping. Preparation and Release Behavior of Microwave Active Controlled Release Capsule in Concrete. Materials Reports, 2022, 36(4): 20100262-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100262  或          http://www.mater-rep.com/CN/Y2022/V36/I4/20100262
1 Song Z J, Cai H C, Liu Y Q, et al. China Concrete and Cement Pro-ducts, 2020, 2, 1013(in Chinese).
宋子健,蔡焕春,刘永琦,等. 混凝土与水泥制品, 2020, 2, 1013.
2 Zuo J, Li H, Zhan J, et al. Cement and Concrete Composites, 2020, 105, 103438.
3 Wang Y, Fang G, Ding W, et al. Scientific Reports,2015,5(1),18484.
4 De Schutter G, Lesage K. Materials and Structures, 2018, 51(5), 123.
5 Lam P L, Gambari R. Journal of Controlled Release, 2014, 178, 2545.
6 Li K, Liu Z, Wang C, et al. Progress in Organic Coatings, 2020, 145, 105668.
7 Yan X X, Qian X Y, Wu Z H. Journal of Forestry Engineering, 2019, 4(5), 2028(in Chinese).
闫小星,钱星雨,吴智慧. 林业工程学报, 2019, 4(5), 2028.
8 Paulo F, Santos L. Materials Science and Engineering: C, 2017, 77, 13271340.
9 Jamekhorshid A, Sadrameli S M, Farid M. Renewable and Sustainable Energy Reviews, 2014, 31, 531542.
10 Yang J, Guo Y, Shen A, et al. Construction and Building Materials, 2019, 227, 116705.
11 Chen P Y. Influence of microcapsules on the properties of high-perfor-mance and multi-function concrete. Ph.D. Thesis, University of Science and Technology of China, China, 2017(in Chinese).
陈佩圆. 微胶囊对高性能、多功能混凝土性能的影响研究.博士学位论文,中国科学技术大学, 2017.
12 Huang H, Ye G, Qian C, et al. Materials & Design,2016,92,499511.
13 Dong B Q, Wang Y S, Ding W J, et al. Journal of Beijing University of Technology, 2014, 40(8), 11681173(in Chinese).
董必钦,王琰帅,丁蔚健,等. 北京工业大学学报, 2014, 40(8), 11681173.
14 Fluri D A, Kemmer C, Daoud-El Baba M, et al. Journal of Controlled Release, 2008, 131(3), 211219.
15 Cresswell X Z. Inorganic Controlled Release Technology, Butterworth-Heinemann Press, UK, 2016,pp.57.
16 Wei W, Shao Z, Zhang Y, et al. Applied Thermal Engineering, 2019, 157, 113751.
17 Wahab A, Aziz M M A, Sam A R M, et al. Construction and Building Materials, 2019, 209, 135146.
18 Sun T Y. Environment friendly microwave heating asphalt pavement recycling maintenance equipment. Master's Thesis, Changsha University of Science and Technology, China, 2009(in Chinese).
孙天野. 环保型微波加热沥青路面再生养护设备. 硕士学位论文, 长沙理工大学, 2009.
19 Liu J, Xu J, Huang H, et al. Cold Regions Science and Technology, 2020, 174, 103064.
20 Karimi M M, Jahanbakhsh H, Jahangiri B, et al. Construction and Building Materials, 2018, 178, 254271.
21 Liu J, Xu J, Lu S, et al. Construction and Building Materials, 2019, 225, 5566.
22 Buttress A J, Jones D A, Dodds C, et al. Cement and Concrete Research, 2015, 75, 7590.
23 Buttress A, Jones A, Kingman S. Cement and Concrete Research, 2015, 68, 112123.
24 Adebayo L L, Soleimani H, Yahya N, et al. Ceramics International, 2020, 46(2), 12491268.
25 Wei R, Wang P, Zhang G, et al. Chemical Engineering Journal, 2020, 382, 122781.
26 Shi Y, Ma C, Du Y, et al. Journal of Materials Chemistry B, 2017, 5(19), 35413549.
27 Liu S S, Peng H X, Hu J L, et al. Chinese Journal of Inorganic Chemistry, 2019, 35(7), 11551162(in Chinese).
刘诗诗, 彭红霞, 胡继林, 等. 无机化学学报, 2019, 35(7), 11551162.
28 Lyu L, Yang Z, Chen G, et al. Construction and Building Materials, 2016, 105, 487495.
29 Zhang M, Chang J. Ultrasonics Sonochemistry, 2010, 17(5), 789792.
30 Wang X, Yin H, Chen Z, et al. Materials Today Communications, 2020, 22, 100854.
31 Unagolla J M, Jayasuriya A C D. European Journal of Pharmaceutical Sciences, 2018, 114, 199209.
32 Agnihotri S A, Mallikarjuna N N, Aminabhavi T M. Journal of Controlled Release, 2004, 100(1), 528.
33 Costa P, Lobo J M S. European Journal of Pharmaceutical Sciences, 2001, 13(2), 123.
34 Zhang W, Wang X, Wang J, et al. International Journal of Biological Macromolecules, 2019, 140, 196205.
35 Rezaeinia H, Ghorani B, Emadzadeh B, et al. Food Hydrocolloids, 2019, 93, 374.
36 Fredenberg S, Wahlgren M, Reslow M, et al. International Journal of Pharmaceutics, 2011, 415(1-2), 3452.
37 Wang Z, Dai N, Wang X, et al. Construction and Building Materials, 2020, 236, 117439.
38 Zhao Y, Liang N, Chen H, et al. Construction and Building Materials, 2020, 238, 117739.
[1] 刘晓英, 阮文琳, 张育新, 饶劲松, 尹长青, 张贤明, 柳云骐. 无机-有机杂化微胶囊:制备技术及在抗磨耐腐蚀涂层中的应用[J]. 材料导报, 2023, 37(9): 21060113-9.
[2] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[3] 黄威, 王轩, 李永清, 王源升, 王博, 王玉江, 魏世丞. 微波吸收材料电磁特性响应规律及影响因素研究进展[J]. 材料导报, 2023, 37(7): 21090051-11.
[4] 王均委, 李琳, 齐家瑞, 郑勤红, 姚斌. 圆柱形光子晶体微波反应腔的加热效率和均匀性研究[J]. 材料导报, 2023, 37(4): 21060010-8.
[5] 章国涛, 高艳, 刘书利, 孟德喜, 高娜燕, 郑勇. 低介电损耗Ca1-xSrxMgSi2O6微波介质陶瓷的结构和介电性能[J]. 材料导报, 2023, 37(4): 21080295-5.
[6] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[7] 陈德钦, 曹雪凤, 黎峰荣, 崔永葆, 李纯纯. 微波介质材料谐振频率温度系数调控的研究现状与展望[J]. 材料导报, 2023, 37(22): 22020176-13.
[8] 王信刚, 雷为愉, 朱街禄, 张晨阳. 可逆热致变色相变微胶囊的热响应及光热转换性能[J]. 材料导报, 2023, 37(20): 22030234-6.
[9] 陈国华, 黄冰虹. 低温共烧低介电常数微波介质陶瓷的研究进展[J]. 材料导报, 2023, 37(20): 22050128-16.
[10] 吴雷, 吴红艳, 邱丝雯, 周军, 张秋利, 田玮. 有机污染土壤微波修复技术中吸波剂的研究进展[J]. 材料导报, 2023, 37(19): 22020006-9.
[11] 曹金安, 王景平, 徐友龙, 邵亮, 郭思琪, 王学川. 天然可生物降解聚合物壁材在微胶囊中的应用[J]. 材料导报, 2023, 37(18): 22010221-19.
[12] 周美洁, 艾立群, 洪陆阔, 孙彩娇, 周玉青, 孟凡峻. 氢冶金基础研究和新工艺探索[J]. 材料导报, 2023, 37(13): 21080052-6.
[13] 王昕阳, 魏世丞, 梁义, 王玉江, 王博. 微波吸收复合材料体系及其计算机辅助设计的研究进展[J]. 材料导报, 2023, 37(11): 21050233-10.
[14] 张东尧, 白开皓, 李传常. 复合相变织物的制备及应用[J]. 材料导报, 2022, 36(8): 20080153-6.
[15] 郭生伟, 王鑫, 薛敏, 李丹, 王固霞. 声化学法制备巯基壳聚糖/黄芪油微胶囊[J]. 材料导报, 2022, 36(6): 21010096-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed