Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 22010221-19    https://doi.org/10.11896/cldb.22010221
  高分子与聚合物基复合材料 |
天然可生物降解聚合物壁材在微胶囊中的应用
曹金安1,2, 王景平1,*, 徐友龙1,*, 邵亮2, 郭思琪2, 王学川3
1 西安交通大学电子陶瓷与器件教育部重点实验室,陕西省先进储能电子材料与器件工程研究中心,西安 710049
2 陕西科技大学化学与化工学院,西安 710021
3 陕西科技大学轻工科学与工程学院,西安 710021
Application of Natural Biodegradable Polymer Wall Materials in Microcapsules
CAO Jin'an1,2, WANG Jingping1,*, XU Youlong1,*, SHAO Liang2, GUO Siqi2, WANG Xuechuan3
1 Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Key Laboratory of Electronic Ceramics and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
2 College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
3 College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
下载:  全 文 ( PDF ) ( 18722KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微胶囊是指由高分子材料包埋而成的具有蛋壳式的微型容器,这种结构具有提高芯材的稳定性和控制芯材缓慢释放的能力。壁材对微胶囊的性能有至关重要的影响,但在倡导绿色可持续发展理念的今天,以天然可生物降解聚合物为壁材的微胶囊得到了更为广泛的关注。天然可生物降解聚合物具有微胶囊壁材所需的机械强度、溶解度、乳化性和稳定性等特性,所制备的微胶囊在医疗、药物、食品以及化妆品等行业有广阔的应用前景。用于微胶囊壁材的天然可生物降解聚合物主要分为多糖类、蛋白质类及脂类三种类型,本文综述了近年来天然可生物降解聚合物壁材的相关文献,详细讨论了各种壁材的功能特性、封装原理、微囊化技术和应用场景。总结指出,成本相对较低的多糖类物质制备的微胶囊水分散性更好,释放速率更快且芯材的利用度更高;而蛋白质类物质乳化性能突出,制备的微胶囊通常具有更高的包封效率和装载量;脂类物质在包封亲水性物质方面具有良好的特性。在工业化制备微胶囊的过程中,采用天然可生物降解聚合物复合壁材可能会逐渐成为主流。对现有天然可生物降解聚合物进行无害化改性,最终通过分子自组装实现对芯材的有效包封已经成为最新的研究热点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹金安
王景平
徐友龙
邵亮
郭思琪
王学川
关键词:  微胶囊  壁材  天然可生物降解性聚合物  多糖  蛋白质  脂类    
Abstract: Microcapsules are micro-containers with polymer eggshells. The stability and freshness of the embedded core material of such capsules can be improved, and the release rate of the core material can be controlled effectively. However, the microcapsule wall material critically affects the final performance of a microcapsule. In this context, from the green and sustainable development perspective, the use of microcapsules with natural biodegradable polymer wall materials is gaining increasing attention. The mechanical strength, solubility, emulsification, and stability of natural biodegradable polymers meet the requirements of microencapsulation walls. Therefore, microcapsules fabricated using natural biodegradable polymers have promising application prospects in the medical, pharmaceutical, food, and cosmetic industries. Three groups of biodegradable polymers, polysaccharides, proteins and lipids, are prevalently used as natural microcapsule wall materials. This study reviews the recent literature on the use of natural biodegradable polymers as microencapsulated wall materials and discusses in detail their functional properties, encapsulation principles, microencapsulation techniques, and application prospects. It was concluded that the microcapsules prepared using polysaccharides have a low cost, better water dispersion, faster release rate, and higher utilization of core materials. The proteins have an excellent emulsification property, which results in a higher encapsulation efficiency and loading capacity of the protein-wall microcapsules. The lipids exhibit excellent performance in the encapsulation of hydrophilic substances. Therefore, the use of various natural biodegradable polymers as microcapsule walls should be mainstreamed in the industrial preparation of microcapsules. The investigation of the harmless modification of natural biodegradable polymers and their microencapsulation processes through molecular self-assembly are possible future research hotspots.
Key words:  microcapsule    wall material    natural biodegradable polymer    polysaccharide    protein    lipids
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TQ314.1  
基金资助: 国家自然科学基金(22078183);陕西省科技厅重点研发计划项目(2021GY-238)
通讯作者:  *王景平,博士,西安交通大学电子科学与工程学院副教授。1997年7月本科毕业于大连工业大学,2011年11月在西安交通大学电信学院取得电子科学与技术博士学位,2012—2013年在香港理工大学进行博士后工作。主要从事功能高分子材料以及导电高分子材料在储能领域的研究工作。发表文章数十篇。wangjingping73@xjtu.edu.cn
徐友龙,西安交通大学二级教授、博士研究生导师,电子科学与技术系主任,先进储能电子材料与器件研究所所长,陕西省先进储能电子材料与器件工程研究中心主任,中国电子学会会士,中国电子学会电子材料与器件专业委员会副主任委员,中国电子元件行业协会电容器分会电解电容器专业技术委员会主任委员,陕西省电子学会常务理事兼电子材料与器件专业委员会主任委员,西安市纳米科技学会理事长。入选“新世纪百千万人才工程”国家级人选,享受国务院政府特殊津贴专家,获得教育部首届青年教师奖、陕西省有突出贡献专家、陕西省教学名师等荣誉称号。发表文章百余篇。ylxu@mail.xjtu.edu.cn   
作者简介:  曹金安,2019年6月毕业于陕西科技大学,获得工学学士学位,现为陕西科技大学化学与化工学院硕士研究生,在王景平副教授的指导下进行研究,目前主要研究领域为天然可生物降解聚合物的微囊化。
引用本文:    
曹金安, 王景平, 徐友龙, 邵亮, 郭思琪, 王学川. 天然可生物降解聚合物壁材在微胶囊中的应用[J]. 材料导报, 2023, 37(18): 22010221-19.
CAO Jin'an, WANG Jingping, XU Youlong, SHAO Liang, GUO Siqi, WANG Xuechuan. Application of Natural Biodegradable Polymer Wall Materials in Microcapsules. Materials Reports, 2023, 37(18): 22010221-19.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010221  或          http://www.mater-rep.com/CN/Y2023/V37/I18/22010221
1 Tong W J, Song X X, Gao C Y. Chemical Society Reviews, 2012, 41(18), 6103.
2 Lombardo S, Villares A. Molecules, 2020, 25(19), 4420.
3 Zhang Z H, Zhong S R, Peng F, et al. Food Science, 2020, 41(9), 246 (in Chinese).
章智华, 钟舒睿, 彭飞, 等. 食品科学, 2020, 41(9), 246.
4 Quintero J, Rojas J, Ciro G. Food Research, 2018, 2(3), 208.
5 Choi Y H, Hwang J S, Han S H, et al. Advanced Functional Materials, 2021, 31(24), 2100782.
6 Fanger G O. Microencapsulation, Springer, Boston, MA, 1974, pp. 1.
7 Kupikowska S B, Lewińska D. Biomaterials Science, 2020, 8(6), 1536.
8 Hoyos L J D, Bello P L A, Alvarez R J, et al. Food Reviews Internatio-nal, 2018, 34(2), 148.
9 Ozkan G, Franco P, De Marco I, et al. Food Chemistry, 2019, 272, 494.
10 Sun Z, Zhao L J, Wan H X, et al. Chemical Engineering Journal, 2020, 396, 125317.
11 Bah M G, Bilal H M, Wang J. Soft Matter, 2020, 16(3), 570.
12 Lengyel M, Kállai S N, Antal V, et al. Scientia Pharmaceutica, 2019, 87(3), 20.
13 Valle J A B, Valle R D C S C, Bierhalz A C K, et al. Journal of Applied Polymer Science, 2021, 138(21), 50482.
14 He S H, Zhong S L, Xu L F, et al. International Journal of Biological Macromolecules, 2020, 155, 42.
15 Meng Y W, Nicol E, Nicolai T. Journal of Colloid and Interface Science, 2022, 617, 65.
16 Li X F, Erni P, Van Der Gucht J, et al. ACS Applied Materials & Interfaces, 2020, 12(13), 15802.
17 Chen K L, Xu C Y, Zhou J L, et al. Carbohydrate Polymers, 2020, 232, 115821.
18 Kozlowska J, Kaczmarkiewicz A. Polymer Degradation and Stability, 2019, 161, 108.
19 Parente J F, Sousa V I, Marques J F, et al. Advances in Polymer Techno-logy, 2022, 2022, 4640379.
20 Jana P, Shyam M, Singh S, et al. European Polymer Journal, 2021, 142, 110155.
21 Zhuo Z Y, Song S N, Bai X J, et al. Packaging Engineering, 2021, 42(15), 112 (in Chinese).
卓祖优, 宋生南, 白小杰, 等. 包装工程, 2021, 42(15), 112.
22 Idrees H, Zaidi S Z J, Sabir A, et al. Nanomaterials, 2020, 10(10), 1970.
23 Bégin A, Van Calsteren M R. International Journal of Biological Macromolecules, 1999, 26(1), 63.
24 Peniche C, Argüelles M W, Peniche H, et al. Macromolecular Bio-science, 2003, 3(10), 511.
25 Hu Y Q, Wu T T, Wu C H, et al. Food Control, 2017, 72, 43.
26 Mu X T, Ju X J, Zhang L, et al. Journal of Membrane Science, 2019, 590, 117275.
27 Martâu G A, Mihai M, Vodnar D C. Polymers, 2019, 11(11), 1837.
28 Gonçalves N D, Grosso C R, Rabelo R S, et al. Carbohydrate Polymers, 2018, 196, 427.
29 Dima C, Pâtraşcu L, Cantaragiu A, et al. Food Chemistry, 2016, 195, 39.
30 Hecht H, Srebnik S. Biomacromolecules, 2016, 17(6), 2160.
31 Liu X D, Yu W T, Wang W, et al. Progress in Chemistry, 2008, 20(1), 126 (in Chinese).
刘袖洞, 于炜婷, 王为, 等. 化学进展, 2008, 20(1), 126.
32 Zhang W B, He S, Liu Y, et al. ACS Applied Materials & Interfaces, 2014, 6(14), 11783.
33 He R J, Yang S, Sun P L, et al. Food & Machinery, 2010, 26(2), 166 (in Chinese).
何荣军, 杨爽, 孙培龙, 等. 食品与机械, 2010, 26(2), 166.
34 Martins E, Poncelet D, Rodrigues R C, et al. Journal of Microencapsulation, 2017, 34(8), 754.
35 Sahoo D R, Biswal T. SN Applied Sciences, 2021, 3(1), 1.
36 Strobel S A, Scher H B, Nitin N, et al. Food Hydrocolloids, 2016, 58, 141.
37 Ma M L, Chiu A, Sahay G, et al. Advanced Healthcare Materials, 2013, 2(5), 667.
38 Rocha C E, Silva M F, Guedes A C, et al. International Journal of Biological Macromolecules, 2021, 176, 567.
39 Sun X X, Cameron R G, Bai J. Food Hydrocolloids, 2020, 100, 105420.
40 Dehkordi S S, Alemzadeh I, Vaziri A S, et al. Applied Biochemistry and Biotechnology, 2020, 190(1), 182.
41 Hu S X, Kuwabara R, Chica C E N, et al. Biomaterials, 2021, 266, 120460.
42 Liang L, Luo Y C. Trends in Food Science & Technology, 2020, 97, 391.
43 Xie M Y, Li J, Nie S P. Journal of Chinese Institute of Food Science and Technology, 2013, (8), 1 (in Chinese).
谢明勇, 李精, 聂少平. 中国食品学报, 2013, (8), 1.
44 Roy A, Singh S, Bajpai J,et al. Open Chemistry, 2014, 12(4), 453.
45 Grant G T, Morris E R, Rees D A, et al. FEBS Letters, 1973, 32(1), 195.
46 Noh J, Kim J, Kim J S, et al. Carbohydrate Polymers, 2018, 182, 172.
47 Wang W J, Feng Y M, Chen W J, et al. Ultrasonics Sonochemistry, 2021, 70, 105322.
48 Qian J Q, Chen Y, Wang Q, et al. European Polymer Journal, 2021, 157, 110676.
49 Hu X X, Liu C Y, Zhang H T, et al. International Journal of Biological Macromolecules, 2021, 193, 1050.
50 Li F F, Wang H F, Mei X H. Journal of Food Engineering, 2021, 311, 110728.
51 Carra J B, De Matos R L N, Novelli A P, et al. Food Chemistry, 2022, 368, 130817.
52 Patel S, Goyal A. International Journal of Food Properties, 2015, 18(5), 986.
53 Williams P A, Phillips G O. Handbook of hydrocolloids (3rd ed.), Elsevier, Woodhead, 2021, pp. 627.
54 Mate C J, Mishra S. Journal of Polymers and the Environment, 2020, 28(6), 1579.
55 Padil V V T, Senan C, Ćerník M. Materials for biomedical engineering, Elsevier, Netherlands, 2019, pp. 127.
56 Bucurescu A, Blaga A C, Estevinho B N, et al. Food and Bioprocess Technology, 2018, 11(10), 1795.
57 Kang Y R, Lee Y K, Kim Y J, et al. Food Chemistry, 2019, 272, 337.
58 Butstraen C, Salaün F. Carbohydrate Polymers, 2014, 99, 608.
59 De Almeida P D, Martins E M F, De Almeida C N, et al. International Journal of Biological Macromolecules, 2019, 133, 722.
60 Eratte D, Wang B, Dowling K, et al. Food & Function, 2014, 5(11), 2743.
61 Willfahrt A, Steiner E, Hötzel J, et al. Applied Physics A: Materials Science & Processing, 2019, 125(7), 1.
62 Nasrollahzadeh M, Sajjadi M, Iravani S, et al. Carbohydrate Polymers, 2021, 251, 116986.
63 Shao M, Li S N, Tan C P, et al. International Journal of Biological Macromolecules, 2021, 173, 118.
64 Irani F, Ranjbar Z, Jannesari A, et al. Progress in Organic Coatings, 2019, 131, 203.
65 Janaswamy S. Carbohydrate Polymers, 2014, 101, 600.
66 Hoyos L J D, Bello P L A, Agama A J E, et al. LWT-Food Science and Technology, 2019, 101, 526.
67 Hoyos L J D, Chavez S A, Castellanos G F, et al. Food Hydrocolloids, 2018, 83, 143.
68 He H Z, Hong Y, Gu Z B, et al. Carbohydrate Polymers, 2016, 147, 243.
69 Sharif H R, Williams P A, Sharif M K, et al. Food Hydrocolloids, 2017, 66, 365.
70 Lei M, Jiang F C, Cai J, et al. International Journal of Biological Macromolecules, 2018, 111, 755.
71 Li H T, Turner M S, Dhital S. LWT-Food Science and Technology, 2016, 74, 542.
72 Kim J Y, Huber K C. Carbohydrate Polymers, 2016, 136, 394.
22010221-1773 Deng J. Preparation and characterization of slow-release fragrance based on β-cyclodextrin cavity structure.Master's Thesis, Shanghai Institute of Technology, China, 2019 (in Chinese).
邓娟. 基于β-环糊精空腔结构的缓释香精的制备及表征. 硕士学位论文, 上海应用技术大学, 2019.
74 Crini G, Fourmentin S, Fenyvesi É, et al. Cyclodextrin fundamentals, reactivity and analysis, Springer, Switzerland, 2018, pp. 4.
75 Uekama K, Otagiri M. Critical Reviews in Therapeutic Drug Carrier Systems, 1987, 3(1), 1.
76 Chen W, Yang L J, Ma S X, et al. Carbohydrate Polymers, 2011, 84(4), 1321.
77 Bezerra F M, Lis M J, Firmino H B, et al. Molecules, 2020, 25(16), 3624.
78 Huang C Y, Yeh T F, Hsu F L, et al. Molecules, 2018, 23(5), 1107.
79 Huang H H, Huang C X, Yin C, et al. Journal of the Science of Food and Agriculture, 2020, 100(13), 4849.
80 Yang Y X, Huan C, Liang X R, et al. Molecules, 2019, 24(21), 3962.
81 Li R, Jiang S, Jiang Z T. Journal of Essential Oil Bearing Plants, 2017, 20(6), 1511.
82 Zhao Z Y, Zhang X J, Cui Y T, et al. Powder Technology, 2019, 358, 29.
83 Pellicer J A, Rodríguez López M I, Fortea M I, et al. Polymers, 2019, 11(2), 252.
84 Azizi N, Abdelkader M B, Chevalier Y, et al. Fibers and Polymers, 2019, 20(4), 683.
85 Bose R J C, Kim M, Chang J H, et al. Journal of Industrial and Engineering, 2019, 77, 12.
86 Han S B. Thermoelectric polymer-cellulose composite aerogels, Linköping University Electronic Press, Sweden, 2019, pp. 13.
87 Kedzior S A, Gabriel V A, Dubé M A, et al. Advanced Materials, 2020, 33(28), 2002404.
88 Han J, Seo Y. Materials, 2021, 14(18), 5273.
89 Furlan D M. Journal of Materials Research and Technology, 2019, 8(2), 2170.
90 Carrick C, Larsson P A, Brismar H, et al. RSC Advances, 2014, 4(37), 19061.
91 Liu Z, Wang H S, Liu C, et al. Chemical Communications, 2012, 48(59), 7350.
92 Peng S, Meng H C, Zhou L, et al. Journal of Nanoscience and Nanotechnology, 2014, 14(9), 7010.
93 Pang L, Gao Z D, Feng H J, et al. Journal of Controlled Release, 2019, 316, 105.
94 Oprea M, Voicu S I. Carbohydrate Polymers, 2020, 247, 116683.
95 Gopinath V, Saravanan S, Al Maleki A, et al. Biomedicine & Pharmacotherapy, 2018, 107, 96.
96 Zhang Z F. Chemical Industry Engineering Progress, 2010, 29(8), 1493 (in Chinese).
张智峰. 化工进展, 2010, 29(8), 1493.
97 Lin Y X, Zhu C Q, Alva G, et al. Applied Energy, 2018, 231, 494.
98 Wu Q X, Guan Y X, Yao S J. Frontiers of Chemical Science and Engineering, 2019, 13(1), 46.
99 Song J, Babayekhorasani F, Spicer P T. Biomacromolecules, 2019, 20(12), 4437.
100 Brun G A K A S, Richard C, Bessodes M, et al. Journal of Controlled Release, 2011, 149(3), 209.
101 Zarrintaj P, Manouchehri S, Ahmadi Z, et al. Carbohydrate Polymers, 2018, 187, 66.
102 Vogelstein B, Gillespie D. Proceedings of the National Academy of Sciences, 1979, 76(2), 615.
103 Yazdi M K, Taghizadeh A, Taghizadeh M, et al. Journal of Controlled Release, 2020, 326, 523.
104 Youssefi A M, Nasirinezhad M, Naeim H, et al. Journal of Composite Materials, 2021, 5(5), 125.
105 Nazari S F, Hashemi P, Rasoolzadeh F. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 465, 47.
106 Ellis A, Jacquier J. Journal of Food Engineering, 2009, 90(2), 141.
107 Xiao Q, Chen G, Zhang Y H, et al. International Journal of Biological Macromolecules, 2020, 163, 2314.
108 Kobayashi T, Aomatsu Y, Iwata H, et al. Transplantation, 2003, 75(5), 619.
109 Huo W Q, Xie G C, Zhang W X, et al. International Journal of Biological Macromolecules, 2016, 87, 114.
110 Zhang B, Yang T Y, Wang Q B, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 498, 128.
111 Lam P L, Gambari R, Kok S L, et al. International Journal of Molecular Medicine, 2015, 35(2), 503.
112 Liu C, Xu Z B, Liu J F, et al. Materials & Design, 2021, 209, 109952.
113 Yang J, Hou Z Q, He W H, et al. Food and Fermentation Industry, 2009, 35(5), 122 (in Chinese).
杨佳, 侯占群, 贺文浩, 等. 食品与发酵工业, 2009, 35(5), 122.
114 Polekkad A, Franklin M E E, Pushpadass H A, et al. Powder Technology, 2021, 381, 1.
115 Parikh A, Agarwal S, Raut K. System, 2014, 4, 6.
116 Liu W H, Wang J, Wang J, et al. Chinese Food Additives, 2007(2), 183 (in Chinese).
刘文慧, 王颉, 王静, 等. 中国食品添加剂, 2007(2), 183.
117 Shen Z, Augustin M A, Sanguansri L, et al. Journal of Agricultural Food Chemistry, 2010, 58(7), 4487.
118 Encina C, Vergara C, Giménez B, et al. Trends in Food Science & Technology, 2016, 56, 46.
119 Drusch S, Serfert Y, Van Den Heuvel A, et al. Food Research International, 2006, 39(7), 807.
120 Jia Z, Dumont M J, Orsat V. Food Bioscience, 2016, 15, 87.
121 Zhang Y X, Cai D, Song Q M, et al. Grain and Oil Processing (Electro-nic Version), 2015(6), 65 (in Chinese).
张予心, 蔡丹, 宋秋梅, 等.粮油加工 (电子版), 2015(6), 65.
122 Keri M N D. Alternative Medicine Review, 2004, 9(2), 136.
123 Je Lee S, Rosenberg M. LWT-Food Science and Technology, 2000, 33(2), 80.
124 Zhang Z H, Peng H, Woo M W, et al. Journal of Food Engineering, 2020, 267, 109729.
125 Parthasarathi S, Anandharamakrishnan C. Food and Bioproducts Proces-sing, 2016, 100, 469.
126 Balakrishnan G, Nguyen B T, Schmitt C, et al. Food Hydrocolloids, 2017, 73, 213.
127 Wang B, Adhikari B, Barrow C J. Powder Technology, 2019, 358, 79.
128 Hu Y, Li Y, Zhang W L, et al. Food Hydrocolloids, 2018, 77, 588.
129 Tardy B L, Mattos B D, Otoni C G, et al. Chemical Reviews, 2021, 121(22), 14088.
130 Qiu J H, Zheng Q X, Fang L, et al. Carbohydrate Polymers, 2018, 196, 322.
131 Holt C. International Dairy Journal, 2016, 60, 2.
132 Chen H Q, Wooten H, Thompson L, et al. Biopolymer nanostructures for food encapsulation purposes, Elsevier, Academic, 2019, pp. 39.
133 Beau M. Le Lait, 1921, 1(1), 19.
134 Gab T K, Boratyński J. Topics in Current Chemistry, 2017, 375(71), 1.
135 Ghayour N, Hosseini S M H, Eskandari M H, et al. Food Hydrocolloids, 2019, 87, 394.
136 Pan K, Zhong Q X, Baek S J. Journal of Agricultural Food Chemistry, 2013, 61(25), 6036.
137 Zhang Y, Pan K,Zhong Q X. Food Biophysics, 2018, 13(1), 37.
138 Yang M, Wei Y M, Ashokkumar M, et al. Ultrasonics Sonochemistry, 2020, 62, 104861.
139 Pan K, Luo Y C, Gan Y D, et al. Soft Matter, 2014, 10(35), 6820.
140 Vaucher A C D S, Dias P C, Coimbra P T, et al. Journal of Microencapsulation, 2019, 36(5), 459.
141 Jain A, Thakur D, Ghoshal G, et al. International Journal of Biological Macromolecules, 2016, 87, 101.
142 Ravanfar R, Celli G B, Abbaspourrad A. ACS Applied Materials & Interfaces, 2018, 10(6), 6046.
143 Baumgartner M, Hartmann F, Drack M, et al. Nature Materials, 2020, 19(10), 1102.
144 Gómez G M C, Giménez B, López C M E, et al. Food Hydrocolloids, 2011, 25(8), 1813.
145 Dang X G, Yang M, Shan Z H, et al. Materials Science & Engineering C: Biomimetic and Supramolecular Systems, 2017, 74, 493.
146 Yang J L, Zhou Z Y, Liang Y, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(35), 13440.
147 Muhoza B, Xia S Q, Wang X J, et al. Food Hydrocolloids, 2020, 105, 105807.
148 Saravanan M, Rao K P. Carbohydrate Polymers, 2010, 80(3), 808.
149 Prata A, Grosso C. Carbohydrate Polymers, 2015, 116, 292.
150 Chua J Y, Liu S Q. Trends in Food Science & Technology, 2019, 91, 24.
151 Lou W Y, Zhong S R, Zhang Z H, et al. Journal of South China University of Technology (Natural Science Edition), 2019, 47(12), 116 (in Chinese).
娄文勇, 钟舒睿, 章智华, 等. 华南理工大学学报 (自然科学版), 2019, 47(12), 116.
152 Chen F P, Liu L L, Tang C H. Food Hydrocolloids, 2020, 105, 105821.
153 Di Giorgio L, Salgado P R, Mauri A N. Food Hydrocolloids, 2019, 87, 891.
154 Castro M A A, Alric I, Brouillet F, et al. AAPS PharmSciTech, 2018, 19(3), 1124.
155 Huang G Q, Wang H O, Wang F W, et al. International Journal of Biological Macromolecules, 2020, 155, 1194.
156 Wang T, Chen K R, Zhang X Z, et al. Ultrasonics Sonochemistry, 2021, 77, 105700.
157 Shi Y Q, Liang R, Chen L, et al. Food Hydrocolloids, 2019, 87, 582.
158 Du Y L, Huang G Q, Wang H O, et al. Journal of Food Engineering, 2018, 234, 91.
159 Mansour M, Salah M, Xu X Y. Ultrasonics Sonochemistry, 2020, 63, 104927.
160 Patel A R, Velikov K P. Current Opinion in Colloid & Interface Science, 2014, 19(5), 450.
161 Labib G. Expert Opinion on Drug Delivery, 2017, 15(1), 65.
162 Hu B, Han L Y, Ma R X, et al. ACS Applied Materials & Interfaces, 2019, 11(12), 11936.
163 Rosa M T M G, Alvarez V H, Albarelli J Q, et al. Journal of Supercritical Fluids, 2020, 159, 104499.
164 Xu Q N, Bai Z X, Ma J Z, et al. Journal of Applied Polymer Science, 2021, 138(36), 50921.
165 Hu M X, Chen X L, Song L J, et al. Journal of Applied Polymer Science, 2020, 138(19), 50403.
166 Franco P, Reverchon E, De Marco I. Journal of CO2 Utilization, 2018, 27, 366.
167 Zhang X, Hu B, Zhao Y G, et al. Langmuir, 2021, 37(35), 10424.
168 Cheng H, Khan M A, Xie Z F, et al. Food Hydrocolloids, 2020, 103, 105675.
169 Zhang Y B, Sun C Z, Wang C, et al. Chemical Reviews, 2021,121(20), 12181.
170 Nahum V, Domb A J. Foods, 2021, 10(2), 400.
171 Akbarzadeh A, Rezaei S R, Davaran S, et al. Nanoscale Research Letters, 2013, 8(1), 1.
172 Hasan M, Belhaj N, Benachour H, et al. International Journal of Pharmaceutics, 2014, 461(1-2), 519.
173 Wang S J, Shi Y, Tu Z C, et al. Journal of Food Engineering, 2017, 207, 73.
174 Xu J S. Microencapsulation of soybeanlecithin and its properties. Master's Thesis, Nanchang University, China, 2010 (in Chinese).
徐井水. 大豆卵磷脂微胶囊化及其性质研究. 硕士学位论文, 南昌大学, 2010
175 Peng S F, Zou L Q, Liu W, et al. Journal of Agricultural and Food Chemistry, 2018, 66(46), 12421.
176 Nguyen T L, Nguyen T H, Nguyen D H. International Journal of Biomaterials, 2017, 2017, 1.
177 Paini M, Daly S R, Aliakbarian B, et al. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1067.
178 Brresen B, Henriksen J R, Clergeaud G, et al. ACS Nano, 2018, 12(11), 11386.
179 Allen T M. Nature Reviews Cancer, 2002, 2(10), 750.
180 Miranda D, Carter K, Luo D, et al. Advanced Healthcare Materials, 2017, 6(16), 1700253.
181 Mehnert W, Mäder K. Advanced Drug Delivery Reviews, 2012, 64, 83.
182 Gordillo G A, Mora H C E. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133, 285.
183 Tenchov R, Bird R, Curtze A E, et al. ACS Nano, 2021, 15(11), 16982.
184 Kukizaki M. Chemical Engineering Journal, 2009, 151(1-3), 387.
185 Bazzarelli F, Piacentini E, Giorno L. Journal of Membrane Science, 2017, 541, 587.
186 Kalaycioglu G D, Aydogan N. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 584, 124037.
187 Han S, Dwivedi P, Mangrio F A, et al. Artificial Cells Nanomedicine and Biotechnology, 2019, 47(1), 957.
188 Torres O, Murray B, Sarkar A. Trends in Food Science & Technology, 2016, 55, 98.
[1] 刘晓英, 阮文琳, 张育新, 饶劲松, 尹长青, 张贤明, 柳云骐. 无机-有机杂化微胶囊:制备技术及在抗磨耐腐蚀涂层中的应用[J]. 材料导报, 2023, 37(9): 21060113-9.
[2] 施宏玉, 邢冀琦, 薛培宏, 刘娟. 分子尺度下研究海洋污损生物的吸附机理[J]. 材料导报, 2023, 37(7): 21120126-7.
[3] 贾少培, 宗泳吉, 黄权, 李其松, 张茜, 李彩玉, 王志新, 穆云超. 蛋白质衍生氮掺杂碳用作电化学能源材料的研究进展[J]. 材料导报, 2023, 37(15): 21100210-14.
[4] 张怀志, 金鑫, 黎享, 赵天颂. 聚氨酯/环氧树脂基混合料型耐久长效道路交通标线材料组合优化研究[J]. 材料导报, 2023, 37(12): 21120002-13.
[5] 张东尧, 白开皓, 李传常. 复合相变织物的制备及应用[J]. 材料导报, 2022, 36(8): 20080153-6.
[6] 王通, 王广飞, 张淑敏, 曲承蕾, 李诚博, 高永林. 基于天然多糖的水凝胶伤口敷料的研究进展[J]. 材料导报, 2022, 36(6): 20060050-9.
[7] 郭生伟, 王鑫, 薛敏, 李丹, 王固霞. 声化学法制备巯基壳聚糖/黄芪油微胶囊[J]. 材料导报, 2022, 36(6): 21010096-5.
[8] 王杨鑫, 邓强, 李成贵, 温永宇. 多糖/金属有机框架(MOFs)复合气凝胶的制备及应用进展[J]. 材料导报, 2022, 36(4): 20080197-10.
[9] 王信刚, 刘世成, 雷为愉, 张晨阳. 石蜡相变微胶囊的热学性能与红外隐身性能[J]. 材料导报, 2022, 36(24): 21090229-5.
[10] 吴凡, 莫丙忠, 何利娟, 莫松平, 贾莉斯, 陈颖. 利用田口实验设计的NaNO3@SiO2微胶囊及其相变性能[J]. 材料导报, 2022, 36(14): 20090293-5.
[11] 姚秉辰, 纪小平, 汤振农, 胡永林, 司柏通. 沥青路面界面聚合微胶囊的制备和性能[J]. 材料导报, 2022, 36(13): 21020130-6.
[12] 李子晗, 赵超, 王闻宇, 金欣, 牛家嵘, 朱正涛, 林童. 蛋白质压电材料的研究进展[J]. 材料导报, 2022, 36(11): 20080182-8.
[13] 朱月风, 赵向臻, 司春棣, 闫涛, 李彦伟. 自修复型微胶囊在沥青路面中的受力分析及破裂机制[J]. 材料导报, 2022, 36(10): 20120095-6.
[14] 李凯旋, 王焕磊. 生物多糖衍生的超级电容器用碳电极材料研究进展[J]. 材料导报, 2022, 36(1): 20080007-13.
[15] 余洁, 赵海岚, 张岚. 角膜接触镜的聚羧酸甜菜碱表面改性研究[J]. 材料导报, 2021, 35(z2): 488-491.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed