Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22020176-13    https://doi.org/10.11896/cldb.22020176
  无机非金属及其复合材料 |
微波介质材料谐振频率温度系数调控的研究现状与展望
陈德钦, 曹雪凤, 黎峰荣, 崔永葆, 李纯纯*
桂林理工大学材料科学与工程学院,广西 桂林 541004
Research Situation and Prospect on Temperature Coefficient of Resonant Frequency of Microwave Dielectric Materials
CHEN Deqin, CAO Xuefeng, LI Fengrong, CUI Yongbao, LI Chunchun*
College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, Guangxi, China
下载:  全 文 ( PDF ) ( 3295KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 无线通信技术的发展离不开微波介质材料。温度稳定性是微波元器件的主要性能参数之一,近零的谐振频率温度系数(τf)可以减少中心谐振频率的漂移。众多国内外学者已经从固溶、复合、叠层等手段对谐振频率温度系数进行了深入研究。本文重点从谐振频率温度系数的调控手段方面,介绍了氧八面体倾斜/畸变、键价等相关理论,分别综述了国内外学者在谐振频率温度系数调控领域的研究进展,对各调控方法的特点进行了详细阐述,最后展望了近零谐振频率温度系数相关研究的发展方向和开放性课题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈德钦
曹雪凤
黎峰荣
崔永葆
李纯纯
关键词:  微波介质材料  谐振频率温度系数  谐振器  陶瓷    
Abstract: Microwave dielectric materials are of great importance for the advance of wireless communication technology. Temperature stability is one of the most important performance indicators of microwave devices, characterized by a near-zero temperature coefficient of resonant frequency (τf) which can reduce the drift of the resonant frequency. Pioneer scholars have conducted in-depth research on the temperature coefficient of resonant frequency by the design of the solid solution, composites, and mechanical stacking. In this paper, focused on the adjustment methods for the τf, the corresponding theories (oxygen octahedron tilt/distortion and bond valence theory) are introduced. The recent research progress on τf regulation is reviewed. Finally, the development direction and open topics of the research related to the temperature coefficient of resonant frequency near zero have been prospected.
Key words:  microwave dielectric materials    temperature coefficient of resonant frequency    resonator    ceramic
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TM21  
基金资助: 国家自然科学基金(62061011)
通讯作者:  * 李纯纯,桂林理工大学材料科学与工程学院副研究员、硕士研究生导师。2014年西安交通大学电子科学与技术专业博士毕业,目前主要从事信息功能材料与器件、敏感元器件的研究工作。发表论文100余篇,包括Nature Materials、Phy-sical Review B、Journal of the European Ceramics Society等。lichunchun2003@126.com   
作者简介:  †共同第一作者
陈德钦,2021年6月于桂林理工大学获得工学学士学位。现为桂林理工大学材料科学与工程学院硕士研究生,在李纯纯老师的指导下进行研究。目前主要研究领域为微波介质材料。
曹雪凤,2020年6月于烟台大学获得工学学士学位。现为桂林理工大学材料科学与工程学院硕士研究生,在李纯纯老师的指导下进行研究。目前主要研究领域为微波介质材料。
引用本文:    
陈德钦, 曹雪凤, 黎峰荣, 崔永葆, 李纯纯. 微波介质材料谐振频率温度系数调控的研究现状与展望[J]. 材料导报, 2023, 37(22): 22020176-13.
CHEN Deqin, CAO Xuefeng, LI Fengrong, CUI Yongbao, LI Chunchun. Research Situation and Prospect on Temperature Coefficient of Resonant Frequency of Microwave Dielectric Materials. Materials Reports, 2023, 37(22): 22020176-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020176  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22020176
1 Zhang J T, Xu S Q, Zhou D X, et al. Electronic Components & Materials, 2004, 23(6), 6 (in Chinese).
章锦泰, 许赛卿, 周东祥, 等. 电子元件与材料, 2004, 23(6), 6.
2 Yin X F, Yu Y H, Zhou C J, et al. China Ceramics, 2006, 42(4), 3 (in Chinese).
尹雪帆, 喻佑华, 周川钧, 等. 中国陶瓷, 2006, 42(4), 3.
3 Harrop P J. Journal of Materials Science, 1969, 4(4), 370.
4 Song X Q, Du K, Li J, et al. Ceramics International, 2019, 45(1), 279.
5 Yoon K H, Kim E S, Jeon J S. Journal of the European Ceramic Society, 2003, 23(14), 2391.
6 Huan Q, Zheng Y, Lv X P, et al. Electronic Components & Materials, 2016, 35(1), 1 (in Chinese).
黄琦, 郑勇, 吕学鹏, 等. 电子元件与材料, 2016, 35(1), 1.
7 Wang H, Tian Z Q, Liu T, et al. Journal of Ceramics, 2005, 26(4), 225 (in Chinese).
王浩, 田中青, 刘涛, 等. 陶瓷学报, 2005, 26(4), 225.
8 Takata M, Kageyama K. Journal of the American Ceramic Society, 1989, 72(10), 1955.
9 Agranovskaya A I. Bulletin of the Academy of Sciences of the Ussr, 1960, 24, 1271.
10 Fang Y, Hu A, Ouyang S, et al. Journal of the European Ceramic Society, 2001, 21(15), 2745.
11 Kim I T, Kim Y H, Chung S J. Journal of Materials Research, 1997, 12(2), 518.
12 Shi F. Bulletin of the Chinese Ceramic Society, 2006, 25(4), 142 (in Chinese).
石锋. 硅酸盐通报, 2006, 25(4), 142.
13 Anderson M T, Greenwood K B, Taylor G A, et al. Progress in Solid State Chemistry, 1993, 22(3), 197.
14 Davies P K, Wu H, Borisevich A Y, et al. Annual Review of Materials Research, 2008, 38(1), 369.
15 Glazer A M. Acta Crystallographica Section B, 1972, 28(11), 3384.
16 Glazer A M. Acta Crystallographica Section A, 1975, 31, 756.
17 Reaney I M, Colla E L, Setter N. Japanese Journal of Applied Physics, 1994, 33, 3984.
18 Goodenough J B. Reports on Progress in Physics, 2004, 67(11), 1915.
19 Gao Y, Wang J J, Wu L, et al. Science China Materials, 2015, 58(4), 302.
20 Rawal R, Mcqueen A J, Gillie L J, et al. Applied Physics Letters, 2009, 94(19), 192904.
21 Tian C L, Yue Z X, Zhou Y Y. Materials Research Bulletin, 2013, 48(2), 455.
22 Jia C L, Mi S B, Faley M, et al. Physical Review B, 2009, 79(8), 1405.
23 Reaney I M, Roulin M, Shulman H S, et al. Ferroelectrics, 1995, 165(1), 295.
24 Park H S, Yoon K H. Journal of the American Ceramic Society, 2001, 84(1), 99.
25 Shannon R D. Acta Crystallographica Section A, 1976, 32(5), 751.
26 Yoon K H, Kim W S, Kim E S. Materials Science and Engineering: B, 2003, 99(1-3), 112.
27 Choi J W, Yoon K H, Dover R B. Journal of the American Ceramic Society, 2006, 89(3), 1083.
28 Wolfram G, Eo H. Materials Research Bulletin, 1981, 16(11), 1455.
29 Wakino K, Minai K, Tamura H. Journal of the American Ceramic Society, 1984, 67(4), 278.
30 Ni J, Wu S P. Journal of Ceramics, 2008, 29(2), 189 (in Chinese).
倪晶, 吴松平. 陶瓷学报, 2008, 29(2), 189.
31 Kulbia R, Snyder R L, Condrate R A, et al. Journal of Physics and Chemistry of Solids, 1993, 54(6), 671.
32 Valant M, Suvorov D. Journal of the American Ceramic Society, 1999, 82(1), 88.
33 Valant M, Suvorov D, Hoffmann C, et al. Journal of the European Ceramic Society, 2001, 21(15), 2647.
34 Li L, Spreitzer M, Suvorov D. Journal of the European Ceramic Society, 2016, 36(14), 3347.
35 Pawełczyk M. Phase Transitions, 1987, 8(4), 213.
36 Moon J H, Jang H M, Park H S, et al. Japanese Journal of Applied Phy-sics, 1999, 38(12A), 6821.
37 Jančar B, Suvorov D, Valant M. Journal of Materials Science Letters, 2001, 20(1), 71.
38 Cho S Y, Hong K S, Ko K H. Materials Research Bulletin, 1999, 34(4), 511.
39 Colla E L, Reaney I M, Setter N. Journal of Applied Physics, 1993, 74(5), 3414.
40 Choi J W, Ha J Y, Yoon S J, et al. Japanese Journal of Applied Physics, 2004, 43(1), 223.
41 Choi J W, Kang C Y, Yoon S J, et al. Journal of Materials Research, 1999, 14(9), 3567.
42 Ohsato H, Ohhashi T, Kato H, et al. Japanese Journal of Applied Phy-sics, 1995, 34(1R), 187.
43 Ohsato H, Kato H, Mizuta M, et al. Japanese Journal of Applied Physics, 1995, 34(9B), 5413.
44 Yi L, Xiang M C. Journal of the European Ceramic Society, 2002, 22(5), 715.
45 Kell R C, Greenham A C, Olds G C E. Journal of the American Ceramic Society, 1973, 56(7), 352.
46 Dou G, Zhou D X, Guo M, et al. Journal of Alloys and Compounds, 2012, 513, 466.
47 Li C, Xiang H, Xu M, et al. Journal of the European Ceramic Society, 2018, 38(4), 1524.
48 Fang Z X, Tang B, Si F, et al. Ceramics International, 2017, 43(2), 1682.
49 Xiang H C, Li C C, Yin C Z, et al. Ceramics International, 2018, 44(5), 5817.
50 Yin C Z, Tang Y, Chen J, et al. Journal of the European Ceramic Society, 2019, 40(4), 1186.
51 Ferreira V M, Azough F, Freer R, et al. Journal of Materials Research, 1997, 12(12), 3293.
52 Wakino K. Ferroelectrics, 1989, 91(1), 69.
53 Cheng H, Xu B, Ma J M. Journal of Materials Science Letters, 1997, 16(19), 1570.
54 Zhang Y, Jiang X, Ding S H, et al. Journal of Materials Science: Materials in Electronics, 2021, 32(9), 12661.
55 Yao G, Liu P. Acta Materiae Compositae Sinica, 2011, 28(1), 94.
56 Zhou H F, Wang W, Chen X L, et al. Ceramics International, 2014, 40(1), 2103.
57 Kai C, Li C C, Xiang H C, et al. Journal of the American Ceramic Society, 2019, 102(1), 362.
58 De Castro A J N, Bessac V L, De Morais J E V, et al. Materials Research Bulletin, 2019, 113, 169.
59 Li J, Zhang Z, Tian Y, et al. Journal of Materials Science, 2020, 55(33), 15643.
60 Belous A, Ovchar O, Durilin D, et al. Journal of the American Ceramic Society, 2010, 89(11), 3441.
61 Chen J Q, Li C C, Xiang H C, et al. Materials Research Bulletin, 2018, 100, 377.
62 Fu Z, Ma J, Li C, et al. Journal of Alloys and Compounds, 2019, 812, 152001.
63 Chen J Q, Tang Y, Xiang H C, et al. Journal of the European Ceramic Society, 2018, 38(14), 4670.
64 Dou G, Guo M, Li Y X. Journal of Materials Science: Materials in Electronics, 2016, 27(1), 359.
65 Zhai Y F, Tang Y, Li J, et al. Ceramics International, 2020, 46(18), 28710.
66 Tseng C F, Tsai P S. Ceramics International, 2013, 39(1), 75.
67 Li J, Tang Y, Zhang Z, et al. Journal of the European Ceramic Society, 2021, 41(2), 1317.
68 Cheng K, Li C, Xiang H, et al. Materials Letters, 2018, 228, 96.
69 Manu K M, Joseph T, Sebastian M T. Materials Chemistry and Physics, 2012, 133(1), 21.
70 Wang D W, Zhang S Y, Wang G, et al. Applied Materials Today, 2020, 18, 100519.
71 Dou G, Zhou D X, Guo M, et al. Journal of Materials Science:Materials in Electronics, 2013, 24(5), 1431.
72 Wei J, Liu P, Lin H, et al. Journal of Alloys and Compounds, 2016, 689, 81.
73 Chen J Q, Tang Y, Yin C Z, et al. Journal of the American Ceramic Society, 2020, 103(3), 1789.
74 Lai Y, Tang X, Zhang H, et al. Materials Research Bulletin, 2018, 99, 496.
75 Breeze J, Penn S J, Poole M, et al. Electronics Letters, 2000, 36(10), 883.
76 Tsunooka T, Sugiyma H, Kakimoto K, et al. Journal of the Ceramic Society of Japan, 2004, 112(5), S1637.
77 Ohsato H, Tsunooka T, Kan A, et al. Key Engineering Materials, 2004, 269, 195.
78 Surendran K P, Santha N, Mohanan P, et al. The European Physical Journal B, 2004, 41(3), 301.
79 Yoon S H, Choi G K, Kim D W, et al. Journal of the European Ceramic Society, 2007, 27(8-9), 3087.
80 Yin C Z, Li C C, Yang G J, et al. Journal of the European Ceramic Society, 2020, 40(2), 386.
81 Xiong Y, Xie H Y, Rao Z G, et al. Journal of Advanced Ceramics, 2021, 10(6), 1360.
82 Li C C, Yin C Z, Khaliq J, et al. ACS Sustainable Chemistry & Engineering, 2021, 9(43), 14461.
83 Ohsato H, Komura A, Takagi Y, et al. Journal of Applied Physics, 1998, 37, 5357.
84 Yoon S O, Yoon J H, Kim K S, et al. Journal of the European Ceramic Society, 2006, 26(10-11), 2031.
85 Lyu X S, Li L X, Zhang S, et al. Materials Letters, 2016, 171, 129.
86 Guo M, Gong S P, Dou G, et al. Journal of Alloys and Compounds, 2011, 509(20), 5988.
87 Pang L X, Wang H, Zhou D, et al. Journal of Alloys and Compounds, 2010, 493(1-2), 626.
88 Kim D W, Kim J H, Kim J R, et al. Japanese Journal of Applied Physics, 2001, 40(1), 5994.
89 Tan Z Y, Song K X, Bafrooei H B, et al. Ceramics International, 2020, 46(10), 15665.
90 Pullar R C, Okeneme K, Alford N M. Journal of the European Ceramic Society, 2003, 23(14), 2479.
91 Moreira R L, Khalam L A, Sebastian M T, et al. Journal of the European Ceramic Society, 2007, 27(8-9), 2803.
92 Zhang Q L, Yang H, Zou J L, et al. Materials Letters, 2005, 59(8-9), 880.
93 Zhang J, Zuo R Z. Materials Letters, 2015, 158, 92.
94 Hui H Y, Bing L, Xin S K. Ceramics International, 2018, 44(Supplement 1), S125.
95 Subodh G, Sebastian M T. Journal of the American Ceramic Society, 2007, 90(7), 2266.
96 Li J, Li C, Wei Z, et al. Journal of the American Ceramic Society, 2015, 98(3), 683.
97 Guo J, Zhou D, Wang H, et al. Journal of Alloys and Compounds, 2011, 509(19), 5863.
98 Guo J, Zhou D, Wang H, et al. Journal of the American Ceramic Society, 2012, 95(1), 232.
99 Li W B, Zhou D, Guo D, et al. Journal of Alloys and Compounds, 2017, 694, 40.
100 Guo B C, Liu P, Yang T, et al. Journal of Alloys and Compounds, 2015, 650, 777.
101 Guo J, Zhou D, Wang L, et al. Dalton Transactions, 2013, 42(5), 1483.
102 Miyauchi Y, Ohishi Y, Miyake S, et al. Journal of the European Ceramic Society, 2006, 26(10-11), 2093.
103 Lu X C, Bian W J, Quan B, et al. Journal of Alloys and Compounds, 2019, 792, 742.
104 Lu W Z, Lei W, Zhu J H, et al. Japanese Journal of Applied Physics, 2007, 46(29), L724.
105 Ohsato H, Tsunooka T, Sugiyama T, et al. Journal of Electroceramics, 2006, 17(2-4), 445.
106 Surendran K P, Bijumon P V, Mohanan P, et al. Applied Physics A, 2005, 81(4), 823.
107 Hong K S. Journal of the European Ceramic Society, 2006, 26(10), 2007.
108 Guo J, Zhou D, Zou S L, et al. Journal of the American Ceramic Society, 2014, 97(6), 1819.
109 Luo H, Fang L, Xiang H C, et al. Ceramics International, 2017, 43(1), 1622.
110 Thomas D, Sebastian M T. Journal of the European Ceramic Society, 2012, 32(10), 2359.
111 Dong Z W, Zheng Y, Cheng P, et al. Ceramics International, 2014, 40(9), 14865.
112 Dong Z W, Zheng Y, Cheng P, et al. Ceramics International, 2014, 40(8), 12983.
113 Guo Y P, Ohsato H, Kakimoto K I. Journal of the European Ceramic Society, 2006, 26(10-11), 1827.
114 Zheng H R, Yu S H, Li L X, et al. Journal of the European Ceramic Society, 2017, 37(15), 4661.
115 Gu Y J, Lei L W, Huang J L, et al. Journal of the European Ceramic Society, 2019, 39(4), 1137.
116 Abreu T O, Abreu R F, Do Carmo F F, et al. Ceramics International, 2021, 47(11), 15424.
117 Peng Y F, Li J Z, Xiao E C, et al. Materials Chemistry and Physics, 2021, 258, 123889.
118 Wu S, Song K X, Liu P, et al. Journal of the American Ceramic Society, 2015, 98(6), 1842.
119 Ren J Q, Bi K, Fu X L, et al. Journal of Materials Chemistry C, 2018, 6(42), 11465.
120 Hu C X, Liu Y, Liu P, et al. Journal of Alloys and Compounds, 2017, 712, 804.
121 Luo T, Shan X X, Zhao J W, et al. Journal of the American Ceramic Society, 2019, 102(7), 3849.
122 Cho W W, Kakimoto K I, Ohsato H. Japanese Journal of Applied Physics, 2004, 43(9A), 6221.
123 Huang C L, Wang J I, Chang Y I. Journal of the American Ceramic Society, 2010, 90(3), 858.
124 Rabha S, Dobbidi P. Journal of Alloys and Compounds, 2021, 872(9B), 159726.
125 Fu Z F, Ma J L, Liu P, et al. Materials Chemistry and Physics, 2017, 200(10), 264.
126 Fu Z, Ma J, Liu P. Materials Letters, 2018, 218(1), 135.
127 Ren H S, Xie T Y, Wu Z L, et al. Journal of Alloys and Compounds, 2019, 797(8), 18.
128 Huang C L, Tseng C F, Yang W U, et al. Journal of the American Ceramic Society, 2008, 91(7), 2201.
129 Tseng C F, Huang C L. Japanese Journal of Applied Physics, 2007, 46(4A), 1571.
130 Huang C L, Chen J Y, Liang C C. Journal of Alloys and Compounds, 2009, 478(1-2), 554.
131 Shen C H, Huang C L. International Journal of Applied Ceramic Technology, 2010, 7(2), 207.
132 Tseng C F, Lu S C. Materials Science & Engineering B, 2013, 178(6), 358.
133 Liao Y J, Meng L F, Liu Q Y, et al. Journal of Synthetic Crystals, 2018, 47(4), 734 (in Chinese).
廖燕君, 蒙柳方, 刘秋颖, 等. 人工晶体学报, 2018, 47(4), 734.
134 Norris A N, Sheng P, Callegari A J. Journal of Applied Physics, 1985, 57(6), 1990.
135 Norris A N, Callegari A J, Sheng P. Journal of the Mechanics and Phy-sics Solids, 1985, 33(6), 525.
136 Paladino A E. Journal of the American Ceramic Society, 1971, 54(3), 168.
137 Fukuda H, Kitoh R, Awa I. Japanese Journal of Applied Physics, 1993, 32(10), 4584.
138 Wu Y, Zhou D, Guo J, et al. Materials Letters, 2011, 65(17-18), 2680.
139 Tsironis C, Pauker V. IEEE Transactions on Microwave Theory and Techniques, 1983, 31(3), 312.
140 Sebastian M T, Jawahar I N, Mohanan P. Materials Science and Engineering: B, 2003, 97(3), 258.
141 Kataria N D, Jawahar I N, Sebastian M T. Materials Letters, 2006, 60(21-22), 2642.
142 Li L, Chen X M, Fan X C. Journal of the American Ceramic Society, 2006, 89(2), 557.
143 Li L, Chen X M, Fan X C. Journal of Electroceramics, 2005, 15(3), 209.
144 Li L, Chen X M, Fan X C. Journal of the European Ceramic Society, 2006, 26(15), 3265.
145 Li L, Chen X M, Fan X C. Journal of the European Ceramic Society, 2006, 26(13), 2817.
146 Li L, Chen X M. Journal of the American Ceramic Society, 2006, 89(2), 544.
147 Li L, Chen X M. Materials Letters, 2009, 63(2), 252.
148 Liou Y C, Wu Y C. Journal of Electronic Materials, 2017, 46(4), 2387.
149 Zhang J, Luo Y, Yue Z X, et al. Journal of the American Ceramic Society, 2019, 102(1), 342.
150 Zhang J, Yue Z, Luo Y, et al. Ceramics International, 2018, 44(17), 21000.
151 Luo W J, Li L X, Zhang B W, et al. Journal of Alloys and Compounds, 2020, 824(15), 153978.
152 Wang S, Luo W J, Li L X, et al. Journal of the European Ceramic So-ciety, 2021, 41(1), 418.
153 Desu S B, O’bryan H M. Journal of the American Ceramic Society, 1985, 68(10), 546.
154 Khalam L A, Sebastian M T. Journal of the American Ceramic Society, 2010, 89(12), 3689.
155 Surendran K P, Sebastian M T, Mohanan P, et al. Chemistry of Materials, 2005, 17(1), 142.
156 Li B, Zheng J, Li W. Materials Chemistry and Physics, 2018, 207, 282.
157 Moradi P, Taheri-Nassaj E, Taghipour-Armaki H. Journal of Alloys and Compounds, 2017, 695, 3772.
158 Liu W Q, Wang Y, Zuo R Z. Journal of Materials Science: Materials in Electronics, 2017, 28(21), 16192.
159 Shi X, Zhang H, Zhang D, et al. Ceramics International, 2021, 47(9), 12567.
160 Shi X L, Zhang H W, Xu F, et al. Journal of Materials Research and Technology, 2021, 13, 283.
161 Fang L, Zhang H, Hong X K, et al. Materials Letters, 2004, 58(30), 3884.
162 Fang L, Yu Q, Zhang H, et al. Journal of the American Ceramic Society, 2007, 90(5), 1626.
163 Jawahar I N, Santha N I, Sebastian M T, et al. Journal of Materials Research, 2002, 17(12), 3084.
164 Tohdo Y, Kakimoto K, Ohsato H, et al. Journal of the European Ceramic Society, 2006, 26(10-11), 2039.
165 Fang L, Meng S S, Hui Z, et al. Materials Letters, 2006, 60(9-10), 1147.
166 Fang L, Liu H F, Hui Z, et al. Journal of Materials Science, 2006, 41(4), 1281.
167 Bijumon P V, Mohanan P, Sebastian M T. Japanese Journal of Applied Physics, 2002, 41(6A), 3441.
168 Bijumon P V, Sebastian M T. Journal of the American Ceramic Society, 2005, 88(12), 3433.
169 Choy J H, Han Y S, Sohn J H, et al. Journal of the American Ceramic Society, 2010, 78(5), 1169.
170 Surendran K P, Solomon S, Varma M R, et al. Journal of Materials Research, 2002, 17(10), 2561.
171 Bijumon P V, Sebastian M T, Mohanan P. Journal of Applied Physics, 2005, 98(12), 4105.
172 Kan A, Ogawa H, Ohsato H. Journal of Alloys and Compounds, 2002, 337(1), 303.
173 Jawahar I N, Sebastian M T, Mohanan P. Materials Science & Enginee-ring B, 2004, 106(2), 207.
174 Nomura S. Ferroelectrics, 1983, 49(1), 61.
175 Ogawa H, Kan A, Yokota S, et al. Journal of the European Ceramic Society, 2001, 21(10-11), 1731.
176 Kan A, Ogawa H, Mori K, et al. Materials Research Bulletin, 2002, 37(8), 1509.
177 Liu X Q, Chen X M. Journal of the European Ceramic Society, 2006, 26(10-11), 1969.
178 Lee H J, Kim I T, Hong K S. Japanese Journal of Applied Physics, 1997, 36(Part 2, No. 10A), L1318.
179 Kan A, Ogawa H, Ohsato H, et al. Journal of the European Ceramic Society, 2001, 21(15), 2593.
180 Kim D W, Kwon D K, Yoon S H, et al. Journal of the American Ceramic Society, 2006, 89(12), 3861.
181 Xiao Y, Chen X M, Liu X Q. Journal of the American Ceramic Society, 2004, 87(11), 2143.
182 Liu X Q, Chen X M, Xiao Y. Materials Science & Engineering B, 2003, 103(3), 276.
183 Mori K, Ogawa H, Kan A, et al. Journal of the European Ceramic Society, 2003, 23(14), 2603.
184 Kagata H, Saito R, Katsumura H. Journal of Electroceramics, 2004, 13(1-3), 277.
185 Pullar R C, Lai C, Azough F, et al. Journal of the European Ceramic Society, 2006, 26(10-11), 1943.
186 Kan A, Ogawa H, Yokoi A, et al. Journal of the European Ceramic Society, 2007, 27(8-9), 2977.
187 Krzmanc M M, Valant M, Suvorov D. Journal of the European Ceramic Society, 2005, 25(12), 2835.
[1] 刘发付, 高闯, 牟晓明, 张丛, 郭在在, 郭建斌, 曹剑武, 林广庆. 预烧结升温速率与HIP保温时间对AlON透明陶瓷透光率影响的研究[J]. 材料导报, 2023, 37(S1): 23030085-5.
[2] 彭启清, 刘明, 黄艳斐, 马国政, 郭伟玲, 王海斗. 热喷涂陶瓷-树脂复合涂层的研究现状[J]. 材料导报, 2023, 37(9): 21100184-12.
[3] 刘云福, 刘峰, 姚初清, 蒋丹枫, 韩文敏, 戴耀东. 基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料[J]. 材料导报, 2023, 37(8): 21090118-9.
[4] 赵云松, 张迈, 戴建伟, 郭会明, 孙志军, 郭媛媛, 张剑, 花银群, 霍坤, 戴峰泽. 航空发动机涡轮叶片热障涂层研究进展[J]. 材料导报, 2023, 37(6): 21040168-7.
[5] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[6] 章国涛, 高艳, 刘书利, 孟德喜, 高娜燕, 郑勇. 低介电损耗Ca1-xSrxMgSi2O6微波介质陶瓷的结构和介电性能[J]. 材料导报, 2023, 37(4): 21080295-5.
[7] 周振豪, 姜勇刚, 冯军宗, 李良军, 冯坚. 直写成型制备多孔陶瓷技术研究进展[J]. 材料导报, 2023, 37(4): 20120004-7.
[8] 万林林, 周启明, 邓朝晖. 工程陶瓷磨削过程的声发射在线监测研究进展[J]. 材料导报, 2023, 37(4): 21050196-11.
[9] 薛云嘉, 刘家臣. 柔性纤维毡的制备及弹性与隔热性能研究[J]. 材料导报, 2023, 37(3): 21030042-6.
[10] 刘嘉航, 吕哲, 周艳文, 解志文, 陈浩, 程蕾. 用于热障涂层的高熵陶瓷材料研究进展[J]. 材料导报, 2023, 37(22): 22060081-11.
[11] 陈国华, 黄冰虹. 低温共烧低介电常数微波介质陶瓷的研究进展[J]. 材料导报, 2023, 37(20): 22050128-16.
[12] 王旋, 宋凯强, 张敏, 丛大龙, 彭冬, 丁星星, 白懿心, 黄安畏, 李忠盛. 锆钛酸铅压电陶瓷元件高温老化行为及其微观机制[J]. 材料导报, 2023, 37(18): 21110230-8.
[13] 向天意, 李端, 李俊生, 王衍飞, 万帆, 刘荣军. 高温电磁透波材料的研究进展[J]. 材料导报, 2023, 37(18): 22090029-11.
[14] 董栋, 苏海军, 李翔, 赵迪, 樊光娆, 申仲琳, 刘园. 光固化3D打印磷酸钙基生物陶瓷支架的研究进展[J]. 材料导报, 2023, 37(18): 22010288-9.
[15] 戴金荣, 唐志红, 段于森, 张景贤. Si3N4/W高温共烧陶瓷的制备与研究[J]. 材料导报, 2023, 37(17): 22040171-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed