Abstract: There is abundant plantation wood in China, which plays an important role in alleviating the shortage of high-quality timber resources. Howe-ver, the plantation wood has disadvantages of low density, low mechanical properties, poor dimensional stability and so on. The original defects of this material could be overcome through organic modification approaches. The improvement of physical and mechanical properties of wood could be realized. The performance of organic modification is mainly based on. The modification process is accomplished through the permeation of modifier into the wood matrix via the multi-stage pore structure of wood. The modifier is deposited in the wood cell wall or cell cavity. The adjustment of the multi-layer physical structure and chemical properties of wood is realized after the physical and chemical interaction of modifier with the wood components. The commonly used wood modification methods include acetylation modification, thermosetting resin modification, reactive monomer modification and so on. The specific action mechanism of these methods on wood multi-layer physical and chemical structure is different. The improvement results on dimensional stability, compressive strength, bending strength and other performance are also differentiated. Therefore, the modification method could be selected according to the application purpose to enhance the specific physical and mechanical properties of wood. By summarizing domestic and foreign researches in this area, this paper classifies the ways of organic modification to cell wall modification, cell cavity modification and cell wall-cavity modification. The research progress on the change of weak phase under the above three modification strategies and the physical and mechanical properties of the modified wood were summarized. The main purpose is untangling the common realization mechanism of improving wood physical and mechanical properties by organic modification. The strengths and weaknesses and development trend for improving wood performances by organic modification will also be analyzed. This review could provide a scientific and systematic reference to the development of processing improvement methods of plantation wood.
通讯作者:
* 杨昇,中国林业科学研究院木材工业研究所助理研究员。2012年西北农林科技大学林产化工专业本科毕业,2017年北京林业大学林产化学加工工程专业博士毕业后到中国林业科学研究院木材工业研究所工作至今。目前主要从事木材化学改性及人造板胶黏剂等方面的研究工作。发表论文20余篇,包括Biotechnology for Biofuels、ACS Sustainable Chemistry & Engineering、Bioresource Technology等。yangsheng@criwi.org.cn
作者简介: 郭登康,2018年6月于浙江农林大学获得工学学士学位。现为中国林业科学研究院博士研究生,在储富祥研究员的指导下进行研究。目前主要研究领域为木材化学改性。以第一作者身份在Composites Part B-Engineering、Wood Science and Technology和《林业科学》发表论文4篇。
引用本文:
郭登康, 郭耐, 傅峰, 杨昇, 李改云, 储富祥. 有机物改性增强木材物理力学性能的研究进展[J]. 材料导报, 2023, 37(22): 22020187-11.
GUO Dengkang, GUO Nai, FU Feng, YANG Sheng, LI Gaiyun, CHU Fuxiang. Research Progress on Improving Physical and Mechanical Properties of Wood by Organic Modification. Materials Reports, 2023, 37(22): 22020187-11.
1 Li S F. Journal of Temperate Forestry Research, 2019, 2(2), 40 (in Chinese). 李少锋. 温带林业研究, 2019, 2(2), 40. 2 Qiu H B, Yang S, Han Y M, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(11), 14450. 3 Xie Y J, Fu Q L, Wang Q W, et al. European Journal of Wood and Wood Products, 2013, 71(4), 401. 4 Guo D K, Shen X S, Yang S, et al. Scientia Silvae Sinicae, 2021, 57(7), 158(in Chinese). 郭登康, 沈晓双, 杨昇, 等. 林业科学, 2021, 57(7), 158. 5 Yang T T, Cao J Z, Mei C T, et al. Cellulose, 2021, 28(14), 9461. 6 Clair B, Gril J, Di Renzo F, et al. Biomacromolecules, 2008, 9(2), 494. 7 Rowell R M, Dickerson J P. American Chemical Society, 2014, 1158, 301. 8 Wang D, Lin L Y, Fu F, et al. Wood Science and Technology, 2019, 53(6), 1295. 9 Wang D, Lin L Y, Fu F, et al. Holzforschung, 2020, 74(7), 715. 10 Wang D. Wood fracture mechanisms under longitudinal tensile and bend loading. Ph. D. Thesis, Nanjing Forestry University, China, 2020 (in Chinese). 王东. 顺纹拉伸和弯曲作用下的木材破坏机理研究. 博士学位论文, 南京林业大学, 2020. 11 Berglund J, Mikkelsen D, Flanagan B M, et al. Nature Communications, 2020, 11(1), 1. 12 Gu L B. China Wood Industry, 2012(3), 5(in Chinese). 顾炼百. 木材工业, 2012(3), 5. 13 Yang L H, Yang S, Wei L T, et al. China Forest Products Industry, 2019, 46(5), 37 (in Chinese). 杨丽虎, 杨松, 魏立婷, 等. 林产工业, 2019, 46(5), 37. 14 Hill C A S. Wood modification, chemical, thermal and other processes, John Wiley and Sons Inc, UK, 2007, pp. 45. 15 Li M L, Li N, Shan J C, et al. Chinese Wood-Based Panel Magazine, 2019 (5), 1 (in Chinese). 李美玲, 李南, 单家成, 等. 中国人造板, 2019 (5), 1. 16 Qiu H B, Han Y M, Fan D B, et al. Materials Report, 2018, 32(15), 191 (in Chinese). 仇洪波, 韩雁明, 范东斌, 等. 材料导报, 2018, 32(15), 191. 17 Zhou Y, Li P, Zuo Y F, et al. Materials Report, 2019, 33(17), 2989 (in Chinese). 周亚, 李萍, 左迎峰, 等. 材料导报, 2019, 33(17), 2989. 18 Liu M H, Guo F, Wang H K, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(37), 13924. 19 Jeremic D, Cooper P, Heyd D. Wood Science and Technology, 2007, 41, 597. 20 Dang Y P, Yan L, Lei Y F. China Wood Industry, 2012, 26(3), 4 (in Chinese). 党娅萍, 闫丽, 雷亚. 木材工业, 2012, 26(3), 4. 21 Meints T, Hansmann C, Gindl-Altmutter W. Polymers, 2018, 10(1), 81. 22 Jeremic D, Cooper P, Brodersen P. Holzforschung, 2007, 61, 272. 23 Alma M H, Hafizolu H, Maldas D. International Journal of Polymeric Materials, 1996, 32(1-4), 93. 24 Rosen H N. Wood and Fiber Science, 1976, 7(4), 249. 25 Zhen S X, Zhang Y W, Fu Y L. Forest Science and Technology, 2015(5), 77 (in Chinese). 郑绍鑫, 张钰雯, 符韵林. 林业科技通讯, 2015(5), 77. 26 Jeremic D, Cooper P, Brodersen P. Holzforschung, 2007, 61(3), 272. 27 Li Y L, Yue C Y. China Wood Industry, 1994, 8(2), 4 (in Chinese). 李筱莉, 岳翠银. 木材工业, 1994, 8(2), 4. 28 Qiu H B, Han Y M, Fan D B, et al. China Wood Industry, 2018, 32(1), 5 (in Chinese). 仇洪波, 韩雁明, 范东斌, 等. 木材工业, 2018, 32(1), 5. 29 Cho N S, Jo J M, Bae K Y. Journal of the Korean Wood Science and Technology, 1975, 3(1), 3. 30 Fahlén J, Salmén L. Biomacromolecules, 2005, 6(1), 433. 31 Himmel S, Mai C. Holzforschung, 2015, 69(5), 633. 32 Cai Y B. Research on the process and mechanism of wood acetvlation. Ph. D. Thesis, Chinese Academy of Forestry, China, 2015 (in Chinese). 柴宇博. 木材乙酰化及其作用机制研究. 博士学位论文, 中国林业科学研究院, 2015. 33 Papadopoulos A N, Tountziarakis P. European Journal of Wood and Wood Products, 2012, 70(1), 399. 34 Bhat I, Khalil R P S A, Awang R B, et al. Materials & Design, 2010, 31(9), 4363. 35 Huang X, Kocaefe D, Kocaefe Y, et al. European Journal of Wood and Wood Products, 2018, 76(2), 525. 36 Özmen N. Journal of Applied Sciences, 2007, 7(5), 710. 37 Subagiyo L, Rosamah E, Hesim. AIP Conference Proceedings, 2017, 1823(1), 020083. 38 Nagarajappa G B, Pandey K K, Shinde A S, et al. Holzforschung, 2016, 70(5), 421. 39 Papadopoulos A N, Pougioula G. Bioresource Technology, 2010, 101(15), 6147. 40 Brelid P L, Simonson R, Risman P O. Holz Als Roh-und Werkstoff, 1999, 57(4), 259. 41 Ramsden M J, Blake F S R, Fey N J. Wood Science & Technology, 1997, 31(2), 97. 42 Chai Y B, Liu J L, Wang Z, et al. BioResources, 2017, 12(1), 912. 43 Chai Y B, Liu J L, Sun B L, et al. China Wood Industry, 2015, 29(1), 5. 柴宇博, 刘君良, 孙柏玲, 等. 木材工业, 2015, 29(1), 5. 44 Salla J, Pandey K K, Prakash G K, et al. Journal of Wood Chemistry and Technology, 2012, 32(2), 121. 45 Šefc B, Trajković J, Hasan M, et al. Drvna industrija, 2009, 60(1), 23. 46 Yusuf S. Wood Research, Bulletin of the Wood Research Institute Kyoto University, 1996, 83, 140. 47 Sun W J, Shen H Y, Cao J Z. Materials & Design, 2016, 96, 392. 48 Xiao Z F, Xie Y J, Militz H, et al. Holzforschung, 2010, 64(4), 475. 49 Guo Y J, Zhang M H, Xiao Z F, et al. Holzforschung, 2018, 72(12), 1043. 50 Stevens M, Parameswaran N. Wood Science and Technology, 1981, 15(4), 287. 51 Lande S, Westin M, Schneider M. Molecular Crystals and Liquid Crystals, 2008, 484(1), 1. 52 Nordstierna L, Lande S, Westin M, et al. Holzforschung, 2008, 62(6), 709. 53 Yang T T, Mei C T, Ma E N. Journal of Materials Science, 2022, 57, 15340. 54 Kong L Z, Guan H, Wang X Q. ACS Sustainable Chemistry & Engineering, 2018, 6(3), 3349. 55 Chang H T, Chang S T. Bioresource Technology, 2006, 97(11), 1265. 56 Wang X Z, Zhao L G, Deng Y H, et al. Holzforschung, 2018, 72(4), 301. 57 Liu M H, Lyu S Y, Peng L M, et al. ACS Sustainable Chemistry and Engineering, 2021, 9, 8142. 58 Ermeydan M A, Babacan M, Tomak E D. Cellulose, 2021, 28(9), 5827. 59 Ermeydan M A, Cabane E, Hass P, et al. Green Chemistry, 2014, 16(6), 3313. 60 Ermeydan M A, Gönültaş O, Candan Z. leri Teknoloji Bilimleri Dergisi, 2017, 6(3), 323. 61 Shen X S. Study on modification of fast growing poplar wood with furfuryl alcohol resin and its mechanism. Ph. D. Thesis, Chinese Academy of Forestry, China, 2021 (in Chinese). 沈晓双, 糠醇树脂改性速生杨木及其机理研究. 博士学位论文, 中国林业科学研究院, 2021. 62 Li W J, Wang H K, Ren D, et al. Wood Science and Technology, 2015, 49(4), 845. 63 Sejati P S, Imbert A, Gérardin-Charbonnier C, et al. Wood Science and Technology, 2017, 51(2), 379. 64 Li W J, Chen L F, Li X W. BioResources, 2019, 14(4), 9628. 65 Yuan J, Hu Y C, Li L F, et al. BioResources, 2013, 8(1), 1076. 66 Jiang T, Gao H, Sun J P, et al. Polymers and Polymer Composites, 2014, 22(8), 669. 67 Emmerich L, Bollmus S, Militz H. Wood Material Science & Engineering, 2019, 14(1), 3. 68 Xie Y J, Krause A, Militz H, et al. Holzforschung, 2007, 61(1), 43. 69 Wang X Z, Chen X Z, Xie X Q, et al. Forests, 2019, 10(8), 646. 70 Deka M, Saikia C N. Bioresource technology, 2000, 73(2), 179. 71 Pittman Jr C U, Kim M G, Nicholas D D, et al. Journal of Wood Che-mistry and Technology, 1994, 14(4), 577. 72 Gindl W, Hansmann C, Gierlinger N, et al. Journal of Applied Polymer Science, 2004, 93(4), 1900. 73 Miroy F, Eymard P, Pizzi A. Holz Als Roh-und Werkstoff, 1995, 53(4), 276. 74 Li Y L, Yu J F, Wang X M, et al. Applied Chemical Industry, 2018, 47(06), 1215 (in Chinese). 李亚玲, 于建芳, 王喜明, 等. 应用化工, 2018, 47(6), 1215. 75 Maaß M C, Saleh S, Militz H, et al. Advanced Materials, 2020, 32(16), 1907693. 76 Lee S H, Ashaari Z, Lum W C, et al. Holzforschung, 2018, 72(2), 159. 77 Shi J L, Kocaefe D, Zhang J. Holz Als Roh-und Werkstoff, 2007, 65(4), 255. 78 Yang T T, Cao J Z. Industrial Crops and Products, 2019, 135, 91. 79 Shen X S, Jiang P, Guo D K, et al. Polymers, 2021, 23, 1. 80 Guo D K, Shen X S, Fu F, et al. Wood Science and Technology, 2021, 55(5), 1401. 81 Guo D K, Guo N, Fu F, et al. Composites Part B, Engineering, 2022, 109748. 82 Furuno T, Imamura Y, Kajita H. Wood Science and Technology, 2004, 37, 349. 83 Meng X. Polymer reinforced wood-based composite prepared by in-situ polymerization of active monomers. Ph. D. Thesis, Northeast Forestry University, China, 2011 (in Chinese). 孟新. 基于活性单体原位聚合制备高聚物增强木基复合材料. 博士学位论文, 东北林业大学, 2011. 84 Gabrielli C P, Kamke F A. Wood Science and Technology, 2010, 44, 95. 85 Jiang J. Properties and mechanisms of wood modified by paraffin-based Pickering emulsions. Ph. D. Thesis, Beijing Forestry University, China, 2018, (in Chinese). 蒋军. 石蜡基Pickering乳液改良木材性能及机理. 博士学位论文, 北京林业大学, 2018. 86 Su N, Fang C H, Yu Z X, et al. Construction and Building Materials, 2021, 287, 123037. 87 Li Y F. Study of wood-organic-inorganic hybrid nanocomposites. Ph. D. Thesis, Northeast Forestry University, China 2012 (in Chinese). 李永峰. 木材-有机-无机杂化纳米复合材料研究. 博士学位论文, 东北林业大学, 2012. 88 Li Y F, Dong X Y, Lu Z G, et al. Journal of Applied Polymer Science, 2013, 128, 13. 89 Ellis W D, O’dell J L. Journal of Applied Polymer Science, 1999, 73(12), 2493. 90 Chao W Y, Lee A. Holzforschung, 2003, 57(3), 333. 91 Dong X Y, Li Y F, Ma L J, et al. Journal of Building Materials, 2015, 18(6), 1028 (in Chinese). 董晓英, 李永峰, 马立军, 等. 建筑材料学报, 2015, 18(6), 1028. 92 Wang C G, Chen M L, Zhang S Y, et al. Journal of Radiation Research and Radiation Processing, 2013, 31(6), 6 (in Chinese). 王传贵, 陈美玲, 张双燕, 等. 辐射研究与辐射工艺学报, 2013, 31(6), 6. 93 Acosta A P, Labidi J, Schulz H R, et al. Forests, 2020, 11(7), 768. 94 Scholz G, Krause A, Militz H. In:Proceedings of the Fourth European Conference on Wood Modification. Stockholm, Sweden. 2009, pp. 209. 95 Dong Y M, Zhang W, Hughes M K, et al. Composites Part B, Engineering, 2019, 174, 106902. 96 He W, Zhang Q S, Jiang S X. International Wood Products Journal, 2014, 5(2), 98. 97 Devi R R, Ali I, Maji T K. Bioresource Technology, 2003, 88(3), 185. 98 Dong X Y, Zhuo X, Wei J, et al. ACS Applied Materials and Interfaces, 2017, 9, 9070. 99 Ermeydan M, Cabane E, Gierlinger N, et al. RSC Advance, 2014, 4(25), 12981. 100 Keplinger T, Cabane E, Chanana M, et al. Acta Biomaterialia, 2015, 11(1), 256. 101 Hazer B, Örs Y, Alma M H. Journal of Applied Polymer Science, 1993, 47(6), 1097. 102 Han X S, Wang Z X, Zhang Q Q, et al. Holzforschung, 2020, 74(5), 435. 103 Dong Y, Altgen M, Mäkelä M, et al. Holzforschung, 2020, 74(10), 967. 104 Shen X S, Zou X W, Li G Y, et al. Scientia Silvae Sinicae, 2019, 55(9), 197 (in Chinese). 沈晓双, 邹献武, 李改云, 等. 林业科学, 2019, 55(9), 197. 105 Thybring E E, Piqueras S, Tarmian A, et al. Cellulose, 2020, 27,5617.