Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 22040171-6    https://doi.org/10.11896/cldb.22040171
  无机非金属及其复合材料 |
Si3N4/W高温共烧陶瓷的制备与研究
戴金荣1,2, 唐志红1,*, 段于森2, 张景贤2,*
1 上海理工大学材料与化学学院,上海 200093
2 中国科学院上海硅酸盐研究所,上海 200050
Preparation and Study of Si3N4/W High Temperature Co-fired Ceramics
DAI Jinrong1,2, TANG Zhihong1,*, DUAN Yusen2, ZHANG Jingxian2,*
1 School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
2 Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
下载:  全 文 ( PDF ) ( 13712KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氮化硅陶瓷具有良好的热导率与优异的力学性能,在大功率电子器件中具有较好的应用前景。实现氮化硅陶瓷与金属的高温共烧对其在电子器件中的应用具有重要意义。高温共烧技术常用氧化铝陶瓷、氧化锆陶瓷和氮化铝陶瓷作为基板材料,鉴于此,本工作以氮化硅陶瓷为基板材料,结合流延成型、丝网印刷以及高温共烧技术制备氮化硅多层共烧组件,探究烧结助剂(Er2O3)含量对氮化硅陶瓷性能的影响,并对氮化硅多层组件脱粘工艺、界面结构与成分和导电性能进行分析与讨论。结果表明:Er2O3含量为9%(质量分数,下同)时,可得到相对密度、收缩率、热导率和抗弯强度分别为95.35%、10.33%、69.94 W/(m·K)和(807.33±10.34) MPa的氮化硅陶瓷。适用于氮化硅多层组件的脱粘工艺为:在真空下以1 ℃/min的速率升温到600 ℃并保温1 h。共烧后氮化硅多层组件中的W层厚度约为7 μm,W层与陶瓷层界面明显,既存在机械互锁型结构,也有界面反应发生,产物为W5Si3。组件的薄层方阻为0.878 Ω/sq,证明组件具有导电性能。本工作为高温共烧技术提供了一种新型的基板材料,也为氮化硅陶瓷与金属高温共烧做出了新的探索,有利于扩展氮化硅陶瓷在电子行业的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戴金荣
唐志红
段于森
张景贤
关键词:  高温共烧技术  氮化硅陶瓷  丝网印刷      
Abstract: Silicon nitride (Si3N4) ceramics, with good thermal conductivity and excellent mechanical properties, have great development prospect in high-power electronic devices. The realization of high temperature co-firing of Si3N4 ceramics and metal is of great significance for the application of Si3N4 ceramics in electronic devices. The substrate materials commonly used in high temperature co-firing technology are alumina, zirconia and aluminum nitride ceramics. In view of this, this work used Si3N4 ceramics as substrate materials, combining tape casting, screen prin-ting and high temperature co-firing technology to prepare Si3N4 multilayer co-firing components, and explored the influence of the sintering additive (Er2O3) content on the properties of Si3N4 ceramics. The debonding process, interface structure and composition, and conductivity of Si3N4 multilayer components were analyzed and discussed. The results showed that at the Er2O3 content of 9%, and the relative density, shrinkage, thermal conductivity and bending strength of Si3N4 ceramics were 95.35%, 10.33%, 69.94 W/(m·K) and (807.33±10.34) MPa, respectively. The debonding process for Si3N4 multilayer components was determined:increasing the temperature up to 600 ℃ with 1 h holding in vacuum at the heating rate of 1 ℃/min. The thickness of the W layer in the obtained Si3N4 multilayer component was about 7 μm, and the boundary between the W layer and the Si3N4 ceramic layer was obvious. There was a mechanical interlocking structure developed with the presence of W5Si3 at the interface due to the reaction between Si3N4 and W. The sheet resistance of the module was 0.878 Ω/sq, which proved that the component showed electrical conductivity. This work provided a new substrate material for high temperature co-firing technology, and also developed the technology of the high temperature co-firing of Si3N4 ceramics with metal, helping to expand the application of Si3N4 ceramics in electronics industry.
Key words:  high temperature co-firing technology    silicon nitride ceramics    screen printing    tungsten
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(52102082);上海扬帆计划(21YF1454500)
通讯作者:  *唐志红,上海理工大学材料与化学学院副教授、硕士研究生导师。2004年于中国矿业大学化工学院获得学士、硕士学位,2008年于中国科学院山西煤炭化学研究所获得博士学位,2010年于清华大学博士后出站后到上海理工大学工作至今。目前主要从事纳米炭材料包括石墨烯、多孔炭及其复合材料的制备、性能及应用等方面的研究工作。发表论文30余篇,包括Angewandte Chemie International Edition、Langmuir、Nanoscale等。zhtang@usst.edu.cn
张景贤,中国科学院上海硅酸盐研究所研究员、博士研究生导师。1990年于兰州大学获得材料科学系理学学士学位,1997年于华东理工大学获得无机材料系硕士学位,2000年于中国科学院上海硅酸盐研究所获得材料学工学博士学位;2005年到中国科学院上海硅酸盐研究所工作至今。目前主要从事高性能陶瓷材料的结构设计、计算和先进制备等方面的研究工作。发表论文100余篇。jxzhang@mail.sic.ac.cn   
作者简介:  戴金荣,2019年7月于南通大学获得工学学士学位。现为上海理工大学材料与化学学院硕士研究生,在唐志红副教授和张景贤研究员的指导下进行研究。目前主要研究领域为高性能陶瓷。
引用本文:    
戴金荣, 唐志红, 段于森, 张景贤. Si3N4/W高温共烧陶瓷的制备与研究[J]. 材料导报, 2023, 37(17): 22040171-6.
DAI Jinrong, TANG Zhihong, DUAN Yusen, ZHANG Jingxian. Preparation and Study of Si3N4/W High Temperature Co-fired Ceramics. Materials Reports, 2023, 37(17): 22040171-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040171  或          http://www.mater-rep.com/CN/Y2023/V37/I17/22040171
1 Haggerty J S, Lightfoot A. Ceramic Engineering &Science Proceedings, 1995, 16, 475.
2 Xu W, Ning X S, Zhou H P, et al. Materials Science and Engneering B, 2003, 99(1-3), 475.
3 Li S P. Equipment for Electronic Products Manufacturing, 2019, 48(1), 8 (in Chinese).
李少鹏. 电子工业专用设备, 2019, 48(1), 8.
4 Su S J, Ren T, Zhang L L, et al. Micromachines, 2021, 12(4), 459.
5 Xin C L, Huang L, Zeng Q, et al. Vacuum, 2021, 187, 110093.
6 Fukuda S, Shimada K, Izu N, et al. Journal of Materials Science:Materials in Electronics, 2017, 28, 12168.
7 Qin D C, Li B Z, Xiao Y L, et al. Materials Reports, 2017, 31(Z2), 5 (in Chinese).
秦典成, 李保忠, 肖永龙, 等. 材料导报, 2017, 31(Z2), 5.
8 Feng X, Lv Y, Zhang L, et al. Ceramics International, 2020, 46(10), 16895.
9 Wang W J, Wang S X, Zhang D, et al. Materials Reports, 2016, 30(17), 44 (in Chinese).
王文君, 王双喜, 张丹, 等. 材料导报, 2016, 30(17), 44.
10 Jurków D, Stiernstedt J, Dorczyński M, et al. Ceramics International, 2015, 41(6), 7860.
11 Wang S. Metalization and co-sintering of the alumina ceramic substrate. Mater’s Thesis, Shandong University of Technology, China, 2015 (in Chinese).
王珊. 氧化铝陶瓷基片的金属化及共烧工艺研究. 硕士学位论文, 山东理工大学, 2015.
12 Xiong J J, Zheng S J, Hong Y P, et al. Journal of Zhejiang University-Science C (Computers & Electronics), 2013, 14(4), 258.
13 Hu Y D. Study of the character of aluminum nitride co-fire metalization and multilayer thin film metalization. Ph. D. Thesis, University of Electronic Science and Technology of China, China, 2002 (in Chinese).
胡永达. 氮化铝共烧基板金属化及其薄膜金属化特性研究. 博士学位论文, 电子科技大学, 2002.
14 Yu F F. Study on preparation and characterization of high-temperature co-fired ceramic (HTCC) screen printing paste. Mater’s Thesis, Central China Normal University, China, 2014 (in Chinese).
余芬芬. 高温共烧陶瓷(HTCC)用丝网印刷浆料的制备工艺与特性研究. 硕士学位论文, 华中师范大学, 2014.
15 Zheng Y, Tong Y Q, Zhang W R. Vacuum Electronics, 2018(4), 13 (in Chinese).
郑彧, 童亚琦, 张伟儒. 真空电子技术, 2018(4), 13.
16 Liu Z, Wang T F, Zhang W R, et al. Vacuum Electronics, 2015 (4), 1 (in Chinese).
刘征, 王腾飞, 张伟儒, 等. 真空电子技术, 2015(4), 1.
17 Xin C L, Yuan R, Wu J, et al. Ceramics International, 2021, 47(3), 3411.
18 Fukuda S J, Shimada K, Izu N, et al. Journal of Materials Science Materials in Electronics, 2017, 28, 8278.
19 Wei Z L, Liu S Y, Liu D L, et al. Journal of Alloys and Compounds, 2022, 896, 163077.
20 Mishra S S, Chaira D, Karak S K. Ceramics International, 2019, 45(16), 20555.
21 于利学, 邹文革, 李平齐, 等. 中国专利, CN112608155A, 2021.
22 Duan Y, Liu N, Zhang J, et al. Journal of the European Ceramic Society, 2020, 40(2), 298.
23 Liu W, Tong W X, Lu X X, et al. Ceramics International, 2019, 45(9), 12436.
24 Hu F, Xie Z P, Zhang J, et al. Rare Metals, 2020, 39(5), 463.
25 Miyazaki H, Hirao K, Yoshizawa Y. Journal of the European Ceramic Society, 2012, 32(12), 3297.
26 Li S J. Preparation and properties of silicon nitride ceramics. Mater’s Thesis, Shandong University of Technology, China, 2019 (in Chinese).
李素娟. 氮化硅陶瓷材料的制备与性能研究. 硕士学位论文, 山东理工大学, 2019.
[1] 赵艳艳, 范敬煜, 魏景, 施欢贤. 碳量子点/Bi2WO6复合材料高效光催化降解RhB和杀灭大肠杆菌及其催化活性增强机理研究[J]. 材料导报, 2023, 37(5): 21060126-8.
[2] 胡冬冬, 宋述鹏, 刘俊男, 毕江元, 丁兴. CVD法制备单层二硒化钨薄膜及其生长机制研究[J]. 材料导报, 2023, 37(2): 21050222-6.
[3] 曾斌, 曾祥荣, 黄万抚. 钨冶炼除磷渣中浸出钼和钨研究[J]. 材料导报, 2023, 37(15): 21120218-5.
[4] 李亮星, 朱志城, 贾孟熹, 黄茜琳. 硬质合金废料电解回收钨及W(Ⅵ)在熔盐中的电化学行为[J]. 材料导报, 2022, 36(Z1): 22010043-6.
[5] 常娜, 陈彦如, 谢锋, 王海涛. Bi2WO6/ZIF-67复合光催化剂的制备及性能研究[J]. 材料导报, 2022, 36(8): 21010028-6.
[6] 鲁春驰, 王影, 王东征. 涂布正极表面丝网印刷氧化锌颗粒对锂离子电池性能的影响[J]. 材料导报, 2022, 36(21): 21050056-5.
[7] 杜军, 蒋敏博, 张永恒, 徐思远, 魏正英. TIG电弧复合熔滴沉积增材制造45钢/铅合金双金属结构工艺研究[J]. 材料导报, 2022, 36(2): 20100016-5.
[8] 于晓晨, 李华健, 高博扬, 蒋银林, 李小杰, 郑荣芳, 吴涵, 宋泽钰, 樊继斌, 赵鹏. Er3+/Yb3+共掺杂Ca0.5Gd(WO4)2荧光粉的发光性能和温度特性[J]. 材料导报, 2022, 36(18): 21050128-6.
[9] 李兵, 黄有鹏, 吴福礼, 杨本宏. Ti3C2Tx/Bi2WO6复合材料的制备及其光催化性能[J]. 材料导报, 2022, 36(17): 21010021-4.
[10] 种振曾, 孙耀宁, 程旺军, 韩晨阳, 苏才津, 娜菲沙·迪力夏提, 樊子龙. 纳米WC对AlCoCrFeNi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2022, 36(14): 22030230-6.
[11] 李东, 吴发超, 李瑞, 高彩云. 表面活性剂模板法构筑有序介孔三氧化钨及其光电化学水氧化性能[J]. 材料导报, 2022, 36(13): 21040241-6.
[12] 何颖, 刘峰, 蒋丹枫, 周江, 刘夏杰, 李珂娴, 沈先荣. 基于钨/钆三层结构的中子/γ一体化辐射防护服材料的设计[J]. 材料导报, 2022, 36(13): 21010270-4.
[13] 宋子威, 于燕, 朱义新, 刘臻. PREP法制备CoCrMoW合金粉末的特性及显微组织[J]. 材料导报, 2022, 36(10): 19060192-5.
[14] 司浩, 秦建, 钟素娟, 龙伟民, 王自东, 沈元勋, 董显. 钎涂技术的研究进展[J]. 材料导报, 2021, 35(z2): 333-340.
[15] 杨广宇, 汤慧萍, 刘楠, 贾文鹏, 贾亮, 杨坤, 王建. 粉床型电子束增材制造W-Nb合金的缺陷及显微组织[J]. 材料导报, 2021, 35(z2): 448-451.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed