Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 21050128-6    https://doi.org/10.11896/cldb.21050128
  无机非金属及其复合材料 |
Er3+/Yb3+共掺杂Ca0.5Gd(WO4)2荧光粉的发光性能和温度特性
于晓晨*, 李华健, 高博扬, 蒋银林, 李小杰, 郑荣芳, 吴涵, 宋泽钰, 樊继斌, 赵鹏
长安大学材料科学与工程学院,西安 710061
Luminescence Properties and Temperature Characteristics of Er3+/Yb3+ Co-doped Ca0.5Gd(WO4)2 Phosphor
YU Xiaochen*, LI Huajian, GAO Boyang, JIANG Yinlin, LI Xiaojie, ZHENG Rongfang, WU Han, SONG Zeyu, FAN Jibin, ZHAO Peng
School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
下载:  全 文 ( PDF ) ( 3905KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 上转换发光材料由于具备独特的热敏特性而被应用于非接触式光学温度传感技术,其中Ca0.5Gd(WO4)2具有良好的热稳定性和光学特性,非常适合作为温度传感器的基质材料。本工作采用高温固相法成功制备了Er3+、Yb3+共掺杂Ca0.5Gd(WO4)2荧光粉,研究了不同Yb3+掺杂浓度对样品物相结构、微观形貌和发光性能的影响。随着Yb3+掺杂浓度的增加,Ca0.5Gd(WO4)2∶Er3+/Yb3+荧光粉的上转换和近红外发光强度先增加后减小,在Yb3+掺杂浓度为10%(摩尔分数,下同)时,发光强度均出现最大值。根据泵浦功率与发光强度的依赖关系可以得出,Er3+的上转换发光属于双光子吸收过程。此外,测量了样品Ca0.5Gd(WO4)2∶0.5%Er3+/10%Yb3+在313~573 K温度范围内的上转换发射光谱,发现其相对灵敏度在548 K时达到最大值0.014 2 K-1。综上,Ca0.5Gd(WO4)2∶Er3+/Yb3+荧光粉在光电材料领域,特别是非接触式光学温度传感器方面具有潜在的应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于晓晨
李华健
高博扬
蒋银林
李小杰
郑荣芳
吴涵
宋泽钰
樊继斌
赵鹏
关键词:  复式钨酸盐  上转换  近红外  温度传感  荧光强度比(FIR)    
Abstract: Up-conversion luminescent materials have been applied in non-contact optical temperature sensing technology due to their unique thermal sensitivity characteristics. Ca0.5Gd(WO4)2, with good thermal stability and optical properties, is suitable for the preparation of temperature-sensitive sensors. In this work, the Er3+/Yb3+ co-doped Ca0.5Gd(WO4)2 phosphors were successfully prepared by high-temperature solid-phase method, and the influences of different Yb3+ doping concentrations on the phase structure, morphology and luminescence properties of the samples were studied. With the increase of Yb3+ doping concentration, the up-conversion and near-infrared luminescence intensity of Ca0.5-Gd(WO4)2∶Er3+/Yb3+ sample first increased and then decreased, and achieved a maximum value when the Yb3+ doping concentration is 10 mol%. According to the relationship between pump power and luminescence intensity, it can be concluded that the up-conversion luminescence of Er3+ is a two-photon absorption process. In addition, the up-conversion luminescence of Ca0.5Gd(WO4)2∶0.5%Er3+/10%Yb3+ was measured in the temperature range of 313—573 K, and it was found that the relative sensitivity reached the maximum value of 0.014 2 K-1 at 548 K. In conclusion, the Ca0.5Gd(WO4)2∶Er3+/Yb3+ phosphor has potential application value in the field of optoelectronic materials, especially in non-contact optical temperature sensors.
Key words:  tungstate    up-conversion    near infrared    temperature sensing    fluorescence intensity ratio
收稿日期:  2202-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  O482  
基金资助: 中国博士后科学基金(2016M602746);中国大学生创新创业训练计划(201910710572);国家自然科学基金(61604016)
通讯作者:  *yuxc2009@163.com   
作者简介:  于晓晨,2009年毕业于南开大学,获凝聚态物理专业理学博士学位。现为长安大学副教授,已在国内外学术期刊上发表论文30余篇,授权国家发明专利5项。研究方向为光电材料与器件,主要包括稀土发光材料、光催化材料及钙钛矿太阳能电池的基础理论和应用研究。
引用本文:    
于晓晨, 李华健, 高博扬, 蒋银林, 李小杰, 郑荣芳, 吴涵, 宋泽钰, 樊继斌, 赵鹏. Er3+/Yb3+共掺杂Ca0.5Gd(WO4)2荧光粉的发光性能和温度特性[J]. 材料导报, 2022, 36(18): 21050128-6.
YU Xiaochen, LI Huajian, GAO Boyang, JIANG Yinlin, LI Xiaojie, ZHENG Rongfang, WU Han, SONG Zeyu, FAN Jibin, ZHAO Peng. Luminescence Properties and Temperature Characteristics of Er3+/Yb3+ Co-doped Ca0.5Gd(WO4)2 Phosphor. Materials Reports, 2022, 36(18): 21050128-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050128  或          http://www.mater-rep.com/CN/Y2022/V36/I18/21050128
1 Zhao Q L, Bian J P, Yang Q H, et al. Materials Reports A:Review Papers, 2019, 33(2), 522(in Chinese).
赵秋丽,卞洁鹏,杨庆浩, 等.材料导报:综述篇, 2019, 33(2), 522.
2 Yu X C, Li H J, Li X J, et al. Journal of Materials Science: Materials in Electronics, 2021, 32, 21032.
3 Wang T W, Chen H J, Zhang R,et al. Chinese Journal of Inorganic Chemistry , 2018, 34(6), 1007(in Chinese).
王庭玮, 陈洪进, 张蕤, 等. 无机化学学报, 2018, 34(6),1007.
4 Yue D, Li Q, Lu W, et al. Journal of Materials Chemistry C, 2015, 3, 2865.
5 Yu X C, Zhang D D, Li Z,et al. Materials Reports B:Research Papers, 2017, 31(4), 1(in Chinese).
于晓晨, 张丹丹, 李哲, 等. 材料导报:研究篇, 2017, 31(4), 1.
6 Singh S K, Singh A K, Kumar D, et al. Applied Physics B, 2010, 98, 173.
7 Du P, Huang X, Yu J. Inorganic Chemistry Frontiers, 2017, 4, 12.
8 Dong B, Cao B, He Y, et al. Advanced Materials, 2012, 24, 1987.
9 Liu J, Zou Z, Shi F, et al. Journal of Alloys and Compounds, 2021, 854,157139.
10 Mazierski P, Roy J K, Mikolajczyk A, et al. Applied Surface Science, 2021, 536, 147805.
11 Yang Y, Mi C, Yu F, et al. Ceramics International, 2014, 40, 9875.
12 Huang X. Journal of Materials Science, 2016, 51, 3490.
13 Chai X, Li J, Wang X, et al. Optics Express, 2016, 24(20), 22438.
14 Wade S A, Collins S F, Baxter G W. Journal of Applied Physics, 2003, 94(8), 4743.
15 Li X X, Li Y Q, Wang X, et al. Chinese Optics, 2019, 12(3), 596(in Chinese).
李晓晓, 李蕴乾, 汪欣, 等. 中国光学, 2019, 12(3), 596.
16 Gao X, Song F, Khana A, et al. Journal of Luminescence, 2021, 230, 117707.
17 Wen H X, Fan B, Li H X, et al. Materials Reports B:Research Papers, 2020, 34(7), 14023(in Chinese).
温慧霞, 樊彬, 李红喜, 等. 材料导报:研究篇,2020,34(7),14023.
18 Xu W, Hu Y, Zheng L, et al. Journal of Luminescence, 2019, 208, 415.
19 Zhou S, Jiang S, Wei X, et al. Journal of Alloys and Compounds, 2014, 588, 654.
20 Du P, Luo L, Li W, et al. Journal of Applied Physics, 2014, 116, 014102.
21 Zhou S, Deng K, Wei X, et al. Optics Communications, 2013, 291, 138.
22 Chen D, Liu S, Xu W, et al. Journal of Materials Chemistry C, 2017, 45, 11769.
23 Wang X, Liu Q, Bu Y, et al. RSC Advances, 2015, 105, 86219.
24 Hua Y, Du P, Yu J S. Materials Research Bulletin, 2018, 107, 314.
25 Suo H, Guo C, Zheng J, et al. ACS Applied Materials & Interfaces, 2016, 44, 30312.
26 Du X D, Zhu G S, Li C Y. Chinese Journal of Rare Metals, 2017, 41(12), 1347(in Chinese).
杜晓迪,朱广双,李春阳,稀有金属,2017, 41(12), 1347.
27 Gu J, Zhu Y, Li H, et al. Solid State Sciences, 2010, 12, 1192.
28 Gu J, Zhu Y, Li H, et al. Journal of Solid State Chemistry, 2010, 183, 497.
29 Mahalingama V, Thirumalai J. Journal of New Chemistry, 2017, 2, 493.
30 Faure N, Borel C. Applied Physics B-Lasers and Optics, 2016, 63, 593.
31 Mahalingam1 V, Thirumalai J. Journal of Materials Science, 2016, 9, 8884.
32 Li G, Wei Y, Li Z, et al. Optical Material, 2017, 66, 253.
33 Chang S L, Aleksandrovsky A, Molokeev M, et al. Journal of Solid State Chemistry, 2015, 228, 160.
34 Mahalingam V, Thirumalai J. Journal of Materials Science: Materials in Electronics, 2016, 27, 8884.
35 Sun Y, Lyu S, Meng Q, et al. Chinese Journal of Luminescence, 2017, 38(12), 1582(in Chinese).
孙英斐, 吕树臣, 孟庆裕, 等. 发光学报, 2017, 38(12), 1582.
36 Tian Y, Tian Y, Huang P, et al. Chemical Engineering Journal, 2016, 297, 26.
37 Chen D, Wan Z, Zhou Y, et al. Journal of Alloys and Compounds, 2015, 638, 21.
38 Zhang Y, Wang X, Ye H, et al. Journal of Materials Science: Materials in Electronics, 2018, 29, 19840.
39 Yao H, Shen H, Tang Q, et al. Journal of Physics and Chemistry of Solids, 2019, 126, 189.
40 Cao B S, Rino L, Wu J L, et al. Sensors and Actuators A-Physical, 2017, 268, 110.
41 Zhang M, Zhai X, Lei P, et al. Journal of Luminescence, 2019, 215, 116632.
[1] 唐昭敏, 田维君. pH响应型纳米药物用于化疗-光热协同治疗肿瘤[J]. 材料导报, 2022, 36(3): 21120187-6.
[2] 李静芝, 高志贤, 李双, 赵旭东, 秦英凯, 刘辉, 韩铁. 上转换纳米颗粒的发光机理、制备及生物应用进展[J]. 材料导报, 2022, 36(14): 20110168-11.
[3] 张浩源, 刘敬肖, 史非, 刘素花, 宋昕. Ptn-CsxWO3/PNIPAM热致调光材料的制备及其隔热性能研究[J]. 材料导报, 2022, 36(1): 20100129-5.
[4] 马思阳, 张晓琳, 宫蕾, 詹世平, 侯维敏, 卢春兰. 基于AIE特性的有机小分子和聚合物的应用进展[J]. 材料导报, 2021, 35(Z1): 566-570.
[5] 王京飞, 杨明庆, 牛春晖, 刘力双, 康浩, 吕勇. 铯钨青铜纳米材料的制备及其在节能领域的研究进展[J]. 材料导报, 2021, 35(21): 21202-21210.
[6] 李道亮, 王嫦嫦, 郭婷, 周鸿媛, 张宇昊, 马良. 掺杂法制备溴氰菊酯UCNP-Fe3O4-MIP传感材料及其传感体系研究[J]. 材料导报, 2021, 35(12): 12169-12174.
[7] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[8] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[9] 梁旭华, 樊君, 赵艳艳, 王永波, 程敏, 潘婷婷. 基于近红外光的纳米药物输送系统研究进展[J]. 材料导报, 2019, 33(9): 1575-1582.
[10] 冯爱玲, 徐榕, 王彦妮, 张亚妮, 林社宝. 核壳型稀土上转换纳米材料及其生物医学应用[J]. 材料导报, 2019, 33(13): 2252-2259.
[11] 吴亚丹, 胡圳, 赵丽, 王世敏, 董兵海, 王二静, 郭海永. 上转换发光材料La(OH)3∶Er3+/Yb3+的制备及在染料敏化太阳能电池中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 708-714.
[12] 李亚军,王学重. 集成过程分析技术和群体粒数衡算模拟的药物材料造粒过程决策支持系统[J]. 《材料导报》期刊社, 2018, 32(10): 1721-1729.
[13] 李珍珍, 张其翼, 黄华莹, 任长靖, 赵强. 近红外荧光磁性复合载药脂质体的制备及应用*[J]. 《材料导报》期刊社, 2017, 31(2): 1-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed