Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1721-1729    https://doi.org/10.11896/j.issn.1005-023X.2018.10.029
  计算模拟 |
集成过程分析技术和群体粒数衡算模拟的药物材料造粒过程决策支持系统
李亚军1,王学重1,2
1 华南理工大学化学与化工学院,广东省创新制药工艺和过程控制工程技术研究中心,广州 510640;
2 School of Chemical and Process Engineering, University of Leeds, Leeds S29JT
A Decision Support System Integrating PAT and Population Balance Models for Pharmaceutical Material Granulation
LI Yajun1,WANG Xuezhong1,2
1 Engineering Center for Pharmaceutical Process Innovation and Advanced Control of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640;
2 School of Chemical and Process Engineering, University of Leeds, Leeds S29JT
下载:  全 文 ( PDF ) ( 5600KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过集成在线近红外光谱仪、实时图像采集与处理系统和群体粒数衡算模型,开发了高剪切湿法造粒过程的决策支持系统(Decision support system, DSS)。利用近红外光谱仪和图像系统实时测量多个过程变量和产品质量指标,包括粉体混合均匀度、颗粒粘合剂含量、粒径分布以及团聚、破裂行为等,能够快速确定过程操作空间。同时,由过程分析平台得到的信息经分析处理后输入工艺过程模型模块,用于估算和校准群体粒数衡算模型中的团聚和破裂速率常数,以此持续提高模型精度。另一方面,模型可以指导实验体系寻找最优操作空间。该决策支持系统成功应用到了以微晶纤维素和甘露醇为原料,3%聚乙烯吡咯烷酮水溶液为粘合剂的高剪切湿法造粒过程中,对两个粘合剂喷淋速率下的造粒过程进行监测。DSS认定粘合剂喷淋过程分为四个阶段:润湿期、成核期、快速生长期和慢速生长期。不同阶段之间的分界点与粘合剂喷淋速率有关。在较高喷淋速率下,颗粒进入成核期和快速生长期所需粘合剂较少,但是对颗粒最终粒径无明显影响。此外,通过近红外光谱测定混合均匀度,确定了粉体的混合终点。该DSS系统将基于过程分析技术的高效实验和过程模拟结合,可以快速确定操作空间以及颗粒的生长行为,实时提供大量数据用于持续提高模型精确度和稳健性,提高造粒过程的优化效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李亚军
王学重
关键词:  造粒  近红外光谱  成像  群体粒数衡算模型  粒度分布  团聚    
Abstract: A decision support system (DSS) is developed for a high shear wet granulation process that has integrated near infrared spectroscopy (NIR), on-line imaging and image analysis, and population balance (PB) models. The integrated PAT (process analytical technology) based on NIR and imaging allows multiple process variables and granule properties to be characterized in real-time, including mixing uniformity, binder content, granule size and size distribution, as well as granule growth, aggregation and breakage, and facilitates rapid identification of the operational spaces. The PAT measurements also provide data for estimation of the rate constants of kinetics kernels in the PB models and continuous improvement of the models. The models on the other hand can be used to guide PAT based experiments in searching for optimum operational space. A case study applying the DSS to the granulation of microcrystalline cellulose and mannitol powders using 3% aqueous solution of polyvinylpyrrolidone as the binder is described. The spraying period has shown to experience four phases: wetting, nucleation, rapid growth and moderate growth, but the boundaries separating the phases were different depending on the spray rate. At a high spraying rate, the binder contents at which the growth stepped into nucleation regime and rapid growth regime were lower. However, it didn’t show significant influence on the median size of the granules formed. In addition, the mixing uniformity was monitored using NIR, allowing identification of the end point of powder mixing. The DSS combined the effective experiments based on PAT with process modelling, which enabled rapid characterization of the operational spaces and granule growth behavior. It also provided sufficient data collected real-time during the process to improve the robust and accuracy of the model continuously, consequently increasing the efficiency of optimization in granulation.
Key words:  granulation    near infrared spectrum    imaging    population balance equation    particle size distribution    aggregation
               出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TB32  
  TQ460.6+2  
基金资助: 国家自然科学基金(91434126;61633006);广东省应用型科技研发专项资金(2015B020232007);广东省自然科学基金(2014A030313228;2017A030310262);中央高校基本科研业务费(2017MS092)
通讯作者:  王学重:通信作者,男,博士,教授,研究方向为制药和化工过程在线测量、模拟和控制 E-mail:xuezhongwang@scut.edu.cn;x.z.wang@leeds.ac.uk   
作者简介:  李亚军:男,1989年生,博士研究生,研究方向为化工系统工程
引用本文:    
李亚军,王学重. 集成过程分析技术和群体粒数衡算模拟的药物材料造粒过程决策支持系统[J]. 《材料导报》期刊社, 2018, 32(10): 1721-1729.
LI Yajun,WANG Xuezhong. A Decision Support System Integrating PAT and Population Balance Models for Pharmaceutical Material Granulation. Materials Reports, 2018, 32(10): 1721-1729.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.029  或          http://www.mater-rep.com/CN/Y2018/V32/I10/1721
1 Iveson S M, Litster J D, Hapgood K, et al. Nucleation, growth and breakage phenomena in agitated wet granulation processes: A review[J].Powder Technology,2001,117(1-2):3.
2 Kumar A, Gernaey K V, De Beer T, et al. Model-based analysis of high shear wet granulation from batch to continuous processes in pharmaceutical production—A critical review[J].European Journal of Pharmaceutics and Biopharmaceutics,2013,85(3):814.
3 Bjorn I N, Jansson A, Karlsson M, et al. Empirical to mechanistic modelling in high shear granulation[J].Chemical Engineering Science,2005,60(14):3795.
4 Ramachandran R, Immanuel C D, Stepanek F, et al. A mechanistic model for breakage in population balances of granulation: Theoretical kernel development and experimental validation[J].Chemical Engineering Research & Design,2009,87(4):598.
5 Chaudhury A, Wu H Q, Khan M, et al. A mechanistic population balance model for granulation processes: Effect of process and formulation parameters[J].Chemical Engineering Science,2014,107(14):76.
6 Capes C E, Danckwerts P V. Granule formation by the agglomeration of damp powders-part Ⅰ: The mechanism of granule growth[J].Transactions of the Institution of Chemical Engineers,1965,43:116.
7 Wauters P A L, van de Water R, Litster J D, et al. Growth and compaction behaviour of copper concentrate granules in a rotating drum[J].Powder Technology,2002,124(3):230.
8 Knight P C, Johansen A, Kristensen H G, et al. An investigation of the effects on agglomeration of changing the speed of a mechanical mixer[J].Powder Technology,2000,110(3):204.
9 Vonk P, Guillaume C P F, Ramaker J S, et al. Growth mechanisms of high-shear pelletisation[J].International Journal of Pharmaceutics,1997,157(97):93.
10 Iveson S M, Litster J D. Growth regime map for liquid-bound gra-nules[J].AIChE Journal,1998,44(7):1510.
11 Hounslow M J, Pearson J M K, Instone T. Tracer studies of high-shear granulation: Ⅱ. Population balance modeling[J].AIChE Journal,2001,47(9):1984.
12 Hounslow M J. The population balance as a tool for understanding particle rate processes[J].KONA Powder and Particle Journal,1998,16:179.
13 Pandya J D, Spielman L A. Floc breakage in agitated suspensions: Effect of agitation rate[J].Chemical Engineering Science,1983,38(12):1983.
14 Soos M, Sefcik J, Morbidelli M. Investigation of aggregation, breakage and restructuring kinetics of colloidal dispersions in turbulent flows by population balance modeling and static light scattering[J]. Chemical Engineering Science,2006,61(8):2349.
15 Hounslow M J, Ryall R L, Marshall V R. A discretized population balance for nucleation, growth, and aggregation[J].AIChE Journal,1988,34(11):1821.
16 Zhou Z L, Li J, Huang S Q, et al. Development of chemometric modelling in the application of NIR to the quality control of Chinese herbal medicine:Literature review and future perspectives[J]. Chemical Industry and Engineering Progress,2016,35(6):1627(in Chinese).
周昭露,李杰,黄生权,等.近红外光谱技术在中药质量控制应用中的化学计量学建模:综述和展望[J].化工进展,2016,35(6):1627.
17 De Beer T, Burggraeve A, Fonteyne M, et al. Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes[J].International Journal of Pharmaceutics,2011,417(1):32.
18 EI-Hagrasy A S, Delgado-Lopez M, Drennen J K. A process analy-tical technology approach to near-infrared process control of pharmaceutical powder blending: Part Ⅱ: Qualitative near-infrared models for prediction of blend homogeneity[J].Journal of Pharmaceutical Sciences,2006,95(2):407.
19 Rantanen J, Jrgensen A, Rsnen E, et al. Process analysis of fluidized bed granulation[J].Aaps Pharmscitech,2001,2(4):13.
20 Rantanen J, Wikstrom H, Turner R, et al. Use of in-line near-infrared spectroscopy in combination with chemometrics for improved understanding of pharmaceutical processes[J].Analytical Chemistry,2005,77(2):556.
21 Alcala M, Blanco M, Bautista M, et al. On-line monitoring of a granulation process by NIR spectroscopy[J].Journal of Pharmaceutical Sciences,2010,99(1):336.
22 Papp M K, Pujara C P, Pinal R. Monitoring of high-shear granulation using acoustic emission: Predicting granule properties[J].Journal of Pharmaceutical Innovation,2008,3(2):113.
23 Watano S, Numa T, Miyanami K, et al. A fuzzy control system of high shear granulation using image processing[J].Powder Technology,2001,115(2):124.
24 Watano S, Numa T, Miyanami K, et al. On-line monitoring of gra-nule growth in high shear granulation by an image processing system[J].Chemical and Pharmaceutical Bulletin,2000,48(8):1154.
25 Watano S. Direct control of wet granulation processes by image processing system[J].Powder Technology,2001,117(1):163.
26 Lan Z L, Liang S, Tian W Y. Particle analysis of cement based on digital microscopic image processing [J]. Materials Review,2008,22(10):88(in Chinese).
蓝章礼,梁爽,田文玉.基于数字显微图像处理的水泥粒度分析[J].材料导报,2008,22(10):88.
27 De Anda J C, Wang X Z, Lai X, et al. Classifying organic crystals via in-process image analysis and the use of monitoring charts to follow polymorphic and morphological changes[J].Journal of Process Control,2005,15(7):785.
28 Wan J, Ma C Y, Wang X Z. A method for analyzing on-line video images of crystallization at high-solid concentrations[J].Particuology,2008,6(1):9.
29 Ennis B J, Tardos G, Pfeffer R. A microlevel-based characterization of granulation phenomena[J].Powder Technology,1991,65(1):257.
30 Benali M, Gerbaud V, Hemati M. Effect of operating conditions and physico-chemical properties on the wet granulation kinetics in high shear mixer [J]. Powder Technology,2009,190(1):160.
31 Chaudhury A, Barrasso D, Pandey P, et al. Population balance model development, validation, and prediction of CQAs of a high-shear wet granulation process:Towards QbD in drug product pharmaceutical manufacturing[J].Journal of Pharmaceutical Innovation,2014,9(1):53.
[1] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[2] 邓云华, 陶军, 马旭颐. TC4钛合金刚性拘束热自压扩散连接接头疲劳性能分析[J]. 材料导报, 2019, 33(9): 1449-1454.
[3] 翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
[4] 袁腾, 梁斌, 黄家健, 杨卓鸿, 邵庆辉. 壳层厚度对中空苯丙乳胶粒结构形态及遮盖性的影响[J]. 材料导报, 2019, 33(4): 724-728.
[5] 赵秋丽, 卞洁鹏, 杨庆浩, 彭龙贵, 王志华, 后振中, 李颖. 聚集诱导发红光材料在生物成像领域的应用[J]. 材料导报, 2019, 33(3): 522-535.
[6] 刘文, 李婷婷, 张冰, 张荣, 刁海鹏, 常宏宏, 魏文珑. 基于绿色天然物质合成荧光碳点及其性质和应用综述[J]. 材料导报, 2019, 33(3): 402-409.
[7] 胡燕燕,杨春林,乔慧娜,欧梅桂. 钆基稀土纳米颗粒的制备及应用研究进展[J]. 材料导报, 2019, 33(13): 2243-2251.
[8] 冯爱玲,徐榕,王彦妮,张亚妮,林社宝. 核壳型稀土上转换纳米材料及其生物医学应用[J]. 材料导报, 2019, 33(13): 2252-2259.
[9] 张昊, 胡强, 张少明, 盛艳伟, 赵新明, 贺会军. 水雾化法制备FeSiCr软磁合金粉末研究[J]. 材料导报, 2018, 32(20): 3590-3594.
[10] 常闯, 万隆, 宋冬冬, 李建伟, 刘莹莹. 溶胶喷雾造粒法制备球形刚玉磨料[J]. 《材料导报》期刊社, 2018, 32(14): 2335-2339.
[11] 李妙玲,陈智勇,赵红霞. C/C复合材料的旋转偏振成像方法[J]. 《材料导报》期刊社, 2018, 32(10): 1678-1682.
[12] 武文红, 牛恒茂, 赵燕茹, 邢永明. 基于图像处理的纤维分布与取向分布对水泥基材料弯曲性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 140-146.
[13] 李珍珍, 张其翼, 黄华莹, 任长靖, 赵强. 近红外荧光磁性复合载药脂质体的制备及应用*[J]. 《材料导报》期刊社, 2017, 31(2): 1-7.
[14] 闫鹏, 艾凡荣, 严喜鸾, 刘东雷. 碳量子点的生物应用:成像、载药与毒性*[J]. 《材料导报》期刊社, 2017, 31(19): 35-42.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed