Please wait a minute...
材料导报  2023, Vol. 37 Issue (14): 21110004-8    https://doi.org/10.11896/cldb.21110004
  金属与金属基复合材料 |
离心铸造双金属环件热辗扩实验研究
常耀东1, 齐会萍1,*, 贾燕龙1, 杨凯峰2, 裴庆林3, 熊波1
1 太原科技大学材料科学与工程学院,太原 030024
2 山西金瑞高压环件有限公司,山西 忻州 035400
3 山西实达锻造股份有限公司,山西 忻州 035400
Experimental Research on Hot Ring Rolling of Centrifugally Cast Bimetallic Rings
CHANG Yaodong1, QI Huiping1,*, JIA Yanlong1, YANG Kaifeng2, PEI Qinglin3, XIONG Bo1
1 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2 Shanxi Jinrui High Pressure Ring Co., Ltd., Xinzhou 035400, Shanxi, China
3 Shanxi Shida Forging Co., Ltd., Xinzhou 035400, Shanxi, China
下载:  全 文 ( PDF ) ( 26803KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 与单金属环件相比,双金属环件可以同时满足复杂环境对环件内外层金属的不同使用要求,具有很大的优势。针对目前双金属环件的制造方法费时费力、结合效果差的现状,笔者提出并研究一种双金属复合环件短流程制造技术,利用离心铸造的双金属环坯直接热辗扩成形双金属环件,生产效率高,节约能源,结合层为冶金结合,结合效果好。本工作以离心铸造的双金属环坯(内层Q345,外层40Cr)为研究对象,采用不同的初始辗扩温度(1 200 ℃、1 150 ℃、1 050 ℃)和辗扩比(2.3、2.0、1.5)进行了辗扩实验,对不同辗扩工艺参数下的环件进行金相实验和拉伸实验。结果表明,随着辗扩比增大,环件整体晶粒先变小后变大,抗拉强度先提高后降低;随着初始辗扩温度降低,晶粒变小,40Cr抗拉强度和塑性提高,Q345抗拉强度先升高后降低,塑性提高。结合层是一个过渡区,没有明显的界线,从一种金属逐渐向另一种金属过渡,它的晶粒比内外层大。辗扩后环件椭圆度均小于0.02,超声波检测无裂纹缺陷。初始辗扩温度为1 050 ℃、辗扩比为2.3时成形的环件综合性能最好。离心铸造的双金属环坯在辗扩后,环件外形好,探伤合格,组织和力学性能得到改善,成功实现了双金属环件的铸辗复合成形。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常耀东
齐会萍
贾燕龙
杨凯峰
裴庆林
熊波
关键词:  双金属环  辗扩温度  辗扩比  显微组织  力学性能    
Abstract: Compared with the single metal ring, the bimetal ring has great advantages. It has two different metal with different properties to meet the different requirements for the inner and outer layers of the ring at the same time. Aiming at the problems of time-consuming, labor-intensive and poor bonding effect in the current manufacture of bimetallic rings, the authors proposes and studies a short-process manufacturing technology for bimetallic composite rings. In this process, two metals are joined together by centrifugal casting to form an annular billet, which is then hot rolled into a bimetallic ring. The method has the advantages of high production efficiency, energy saving, and good bonding layer. Based on the centrifugal casting bimetallic ring billets (inner layer Q345, outer layer 40Cr), ring rolling experiments were carried out at different initial rolling temperatures (1 200 ℃, 1 150 ℃, 1 050 ℃) and different rolling ratios (2.3, 2.0, 1.5). Metallographic and tensile experiments were performed on these rings. With the increase of rolling ratio, the grain size of the ring first became smaller and then larger, and the tensile strength first increased and then decreased. With the increase of rolling ratio, the grain size of the ring first became smaller and then larger, and the tensile strength first increased and then decreased. The bonding layer is a transition region with no obvious boundaries and its grains are larger than those of inner and outer layers. With the decrease of initial rolling temperature, the tensile strength increases first and then decreases, and the plasticity increases. All the ovality of rolled rings are less than 0.02, and no crack is detected by ultrasonic. When the initial rolling temperature is 1 050 ℃ and the rolling ratio is 2.3, the comprehensive performance of the ring is the best. The bimetallic ring of centrifugal casting has good shape, no crack defect, and its microstructure and mechanical properties have been improved after rolling. The casting and rolling compound forming of bimetallic ring is realized successfully.
Key words:  bimetallic ring    rolling temperature    rolling ratio    microstructure    mechanical property
出版日期:  2023-07-25      发布日期:  2023-07-24
ZTFLH:  TG331  
基金资助: 国家自然科学基金(51875383);山西省回国留学人员科研资助项目(2021-140)
通讯作者:  *齐会萍,太原科技大学教授、博士研究生导师。1996年7月、2007年6月、2012年6月于太原科技大学分别获得学士、硕士和博士学位。近年来主要研究环形零件铸辗复合成形新工艺。主持国家自然科学基金 3 项、山西省科技厅项目 2 项,多次参加重要国际学术会议。获国家专利优秀奖1项。发表论文 30 余篇,参编教材一部,获国家发明专利8项。qhp9974@tyust.edu.cn   
作者简介:  常耀东,2019年7月于太原科技大学获得工学学士学位,现为太原科技大学硕士研究生,在齐会萍教授的指导下进行研究。主要研究课题是环形零件铸辗复合成形新工艺。参加国家自然科学基金1项。
引用本文:    
常耀东, 齐会萍, 贾燕龙, 杨凯峰, 裴庆林, 熊波. 离心铸造双金属环件热辗扩实验研究[J]. 材料导报, 2023, 37(14): 21110004-8.
CHANG Yaodong, QI Huiping, JIA Yanlong, YANG Kaifeng, PEI Qinglin, XIONG Bo. Experimental Research on Hot Ring Rolling of Centrifugally Cast Bimetallic Rings. Materials Reports, 2023, 37(14): 21110004-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110004  或          http://www.mater-rep.com/CN/Y2023/V37/I14/21110004
1 Wang C W. Research on cold rolling forming technology of bimetal composite bearing ring. Master’s Thesis, University of Ningbo, China, 2018 (in Chinese).
王成威. 双金属复合材料轴承套圈冷辗扩成形技术研究. 硕士学位论文, 宁波大学, 2018.
2 Qin F C, Qi H P, Li Y T, et al. Materials Reports, 2020, 34(19), 19152 (in Chinese).
秦芳诚, 齐会萍, 李永堂, 等. 材料导报, 2020, 34(19), 19152.
3 Qin F C, Qi H P, Li Y T, et al. Materials Reports, 2021, 35(9), 9049 (in Chinese).
秦芳诚, 齐会萍, 李永堂, 等. 材料导报, 2021, 35(9), 9049.
4 Qi H P, Li Y T, Hua L, et al. Journal of Mechanical Engineering, 2014, 50(14), 75 (in Chinese).
齐会萍, 李永堂, 华林, 等. 机械工程学报, 2014, 50(14), 75.
5 Zhu S A, Yang H, Guo L G, et al. The International Journal of Advanced Manufacturing Technology, 2014, 72(1), 57.
6 Liang L, Guo L G, Liu Z H, et al. Journal of Materials Processing Technology, DOI: 10. 1016/j. jmatprotec. 2022. 117628.
7 Yang H, Wang M, Guo L G, et al. Computational Materials Science, 2008, 44(2), 611.
8 Li X C, Guo L G, Wang Y F, et al. Manufacturing Review, 2019, 6, 20.
9 Qin F C, Li Y T, Qi H P, et al. Advanced Materials and Processes, DOI:10. 4028/www. scientific. net/AMM. 395-396. 930.
10 Qin F C, Qi H P, Liu C Y, et al. Advances in Materials Science and Engineering, DOI:10. 1155/2021/6638505.
11 Chen Y Y, Qi H P, Li Y T, et al. Advances in Materials Science and Engineering, DOI:10. 1155/2021/9120018.
12 Qin F C, Qi H P, Li Y T. Materials Reports, 2020, 34(12), 12132 (in Chinese).
秦芳诚, 齐会萍, 李永堂, 等. 材料导报, 2020, 34(12), 12132.
13 Qin F C, Li Y T, Qi H P, et al. China Metalforming Equipment & Manufacturing Technology, 2015, 50(4), 78 (in Chinese).
秦芳诚, 李永堂, 齐会萍, 等. 锻压装备与制造技术, 2015, 50(4), 78.
14 Pei M M, Qi H P, Qing F C, et al. Special Casting and Non-ferrous Alloy, 2021, 41(8), 1031 (in Chinese).
裴蒙蒙, 齐会萍, 秦芳诚, 等. 特种铸造及有色合金, 2021, 41(8), 1031.
15 Yang C, Qin F C, Qi H P, et al. Forging & Stamping Technology, 2021, 46(3), 208 (in Chinese).
杨超, 秦芳诚, 齐会萍, 等. 锻压技术, 2021, 46(3), 208.
16 Zhou M X, Zhou S M, Zhang W S, et al. Hot Working Technology, 2020, 49(4), 122 (in Chinese).
周明星, 周世明, 张万顺, 等. 热加工工艺, 2020, 49(4), 122.
17 Liu Z C, Ji Y P, Ren H P, et al. Heat Treatment, 2008(4),19(in Chinese).
刘宗昌, 计云萍, 任慧平, 等. 热处理, 2008(4), 19.
18 Liu X G. Study on widmanstatten structure in microallying steel of Q460E. Ph. D. Thesis, China Academy of Railway Sciences, China, 2011 (in Chinese).
刘鑫贵. Q460E微合金化钢中魏氏组织的研究. 博士学位论文, 中国铁道科学研究院, 2011.
19 Lin W, Zhang X W, Zhao Y K, et al. Materials Science and Technology. 2009, 17(2), 247 (in Chinese).
林武, 张希旺, 赵延阔, 等. 材料科学与工艺, 2009, 17(2), 247.
20 Zhao Z M. Science and Technology Innovation Herald, 2016, 13(5), 34 (in Chinese).
赵志明. 科技创新导报, 2016, 13(5), 34.
21 Yao M, Fan Y L. Materials Science and Technology, 1986(3), 43 (in Chinese).
姚枚, 范莹隆. 金属科学与工艺, 1986(3), 43.
22 Huang Z, Yao M, Fan Y L, et al. Acta Metallurgica Sinica, 1987(3), 223 (in Chinese).
黄正, 姚枚, 范莹龙, 等. 金属学报, 1987(3), 223.
23 Huang Z, Yao M. Iron & Steel, 1990(4), 56 (in Chinese).
黄正, 姚枚. 钢铁, 1990(4), 56.
24 Yao S C, Ding Y, Zhao H, et al. Materials Reports, 2020, 34(S1), 452 (in Chinese).
姚三成, 丁毅, 赵海, 等. 材料导报, 2020, 34(S1), 452.
25 Ding Sheng, Taylor Tom,Khan Sabrina Alam, et al. Journal of Materials Processing Tech, 2021, 299, 117359.
26 Pan L B, Chu T, Zhang S, et al. Heat Treatment of Metals, 2021, 46(7), 23 (in Chinese).
潘龙博, 储滔, 张硕, 等. 金属热处理, 2021, 46(7), 23.
27 Pei M M. Study on thermal deformation and microstructure evolution behavior of 40Cr/Q345B bimetallic in centrifugal casting. Master’s Thesis, Taiyuan University of Science and Technology, China, 2021 (in Chinese).
裴蒙蒙. 离心铸造40Cr/Q345B双金属的热变形及组织演变行为研究. 硕士学位论文, 太原科技大学, 2021.
28 Qin F C, Qi H P, Li Y T, et al. Journal of Mechanical Engineering, 2017, 53(2), 26 (in Chinese).
秦芳诚, 齐会萍, 李永堂, 等. 机械工程学报, 2017, 53(2), 26.
29 Fan Y L. Journal of Xiangtan University Natural Science Edition, 1992(3), 44 (in Chinese).
范莹隆. 湘潭大学自然科学学报, 1992(3), 44.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[3] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[4] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[5] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[6] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[7] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[8] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[9] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[10] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[11] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[12] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[13] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[14] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[15] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed