Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21050074-11    https://doi.org/10.11896/cldb.21050074
  无机非金属及其复合材料 |
基于定向冷冻技术构建的多孔材料及其应用
俞彦飞1, 王暄1,2, 高鑫3,*, 宁锋3, 张浩鹏3, 岳红彦3
1 哈尔滨理工大学电气与电子工程学院,哈尔滨 150080
2 哈尔滨理工大学电介质及其应用重点实验室,哈尔滨 150080
3 哈尔滨理工大学材料科学与化学工程学院,哈尔滨 150040
Review of Porous Materials Derived from Using the Directional Freeze-casting Technique and Their Applications
YU Yanfei1, WANG Xuan1,2, GAO Xin3,*, NING Feng3, ZHANG Haopeng3, YUE Hongyan3
1 School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
2 Key Laboratory of Engineering Dielectrics and Its Application, Harbin University of Science and Technology, Harbin 150080, China
3 School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
下载:  全 文 ( PDF ) ( 73928KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 定向冷冻技术是将原材料、溶剂及添加剂均匀混合,利用溶剂的“液-固-气”相转变获得多孔材料的一种方法,具有操作简便和绿色环保等优点。与通常的造孔技术不同,定向冷冻技术可实现对物理、化学和力学性能的高度控制,所制备的材料具有定向排列的孔隙和不同层面上的分级结构。这种技术被广泛应用于制备具有各向异性的无机、有机、杂化和碳质多孔材料。此外,该方法还可以扩展到模拟天然结构的仿生材料中,以组装具有优异力学和物理特征的多孔复合材料,在环境、能源、热管理和生物医学等领域具有广阔的应用前景。
本文从定向冷冻技术的来源以及原理出发,根据单颗粒及多颗粒的受力模型揭示了定向结构的形成机理,分析了溶质、溶剂、温度梯度和添加剂等对材料结构以及性能的影响。另外,根据前驱体材料掺杂改性的不同手段,介绍了一步法与两步法制备定向结构的特点。同时,总结了定向冷冻技术在污染物吸附、能量储存与转换、结构材料、热管理和生物材料等方面的研究进展,最后指出了当前研究中亟需解决的问题,并展望了其未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
俞彦飞
王暄
高鑫
宁锋
张浩鹏
岳红彦
关键词:  多孔材料  定向冷冻  冰模板  各向异性    
Abstract: Directional freeze casting is a method that uses the "liquid-solid-gas" phase transformation of solvents to obtain porous materials by uniformly mixing raw materials, solvents and additives. It has the advantages of simple operation and green environmental protection. Different from the usual pore-making technology, it offers a high degree of control over the physical, chemical and mechanical properties of materials, where the materials prepared by this technology have oriented pores and hierarchical structures at different levels. Because of these characteristics, this technique is widely used in anisotropic porous inorganic, organic, hybrid and carbonaceous materials. This method can also be extended to simulate the structures of natural materials to assemble porous composites with excellent mechanical and physical properties. Finally, the method offers wide application prospects in fields such as environmental science, energy, thermal management and biology.
In this paper, based on the origins and principles of directional freezing technology, the formation mechanism of a directional structure is revealed based on the force model of single and multiple particles. The effects of the solute, solvent, temperature gradient, and additives on a structure and on the properties of the materials are analyzed. In addition, according to the different means of doping modification of precursor materials, the characteristics of directional structures prepared by one-step and two-step methods are introduced. Simultaneously, the research progress of directional freezing technology in pollutant adsorption, energy storage and conversion, structural materials, thermal management, and biomaterials are summarized. Finally, the problems that must be solved in the current research are briefly described, and future developmental directions are proposed.
Key words:  porous material    directional freeze-casting    ice template    anisotropy
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  TB333  
基金资助: 教育部“春晖计划”(HLJ2019007);哈尔滨理工大学杰出青年项目(LGYC2018JQ012);黑龙江省普通高校基本科研业务费专项资金(2019-KYYWF-0239)
通讯作者:  *高鑫,博士,哈尔滨理工大学材料科学与化学工程学院讲师、硕士研究生导师。2012年在哈尔滨理工大学毕业,获学士学位。2015年在哈尔滨理工大学毕业,获硕士学位。2019年在哈尔滨理工大学毕业,获博士学位。主要从事金属基复合材料和新型纳米材料等方面的研究工作,近年来在相关领域发表SCI论文12篇,授权发明专利4项。gaoxin6825@126.com
岳红彦,博士,哈尔滨理工大学材料科学与化学工程学院教授、博士研究生导师。2002年在哈尔滨理工大学毕业,获学士学位。2005年在哈尔滨理工大学毕业,获硕士学位。2009年在哈尔滨工业大学材料物理与化学专业博士毕业,获工学博士学位。2012—2013年和2016—2018年,分别在韩国成均馆大学和美国凯斯西储大学作为访问学者。主要从事石墨烯增强金属基复合材料、纳米生物传感器、纳米材料在生物医学中的应用和新型能源存储材料(超级电容器)等方面的研究工作。近年来,在ACS Nano、Advanced Functional Materials、Biosensors and Bioelectronics、Carbon、Sensors and Actuators B:Chemical和Materials and Design等期刊发表论文70余篇,授权国家发明专利22项。hyyue@hrbust.edu.cn   
作者简介:  俞彦飞,2016年6月毕业于哈尔滨理工大学,获得工学学士学位。2022年3月毕业于哈尔滨理工大学,获得工学硕士学位,主要研究领域为新型能源存储材料。
引用本文:    
俞彦飞, 王暄, 高鑫, 宁锋, 张浩鹏, 岳红彦. 基于定向冷冻技术构建的多孔材料及其应用[J]. 材料导报, 2023, 37(5): 21050074-11.
YU Yanfei, WANG Xuan, GAO Xin, NING Feng, ZHANG Haopeng, YUE Hongyan. Review of Porous Materials Derived from Using the Directional Freeze-casting Technique and Their Applications. Materials Reports, 2023, 37(5): 21050074-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050074  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21050074
1 Yang X Y, Chen L H, Li Y, et al. Chemical Society Reviews, 2017, 46(2), 481.
2 Sing K S W. Pure and Applied Chemistry, 1982, 54(11), 2201.
3 Roberts A D, Li X, Zhang H F. Chemical Society Reviews, 2014, 43(13), 4341.
4 Al-Muhtaseb S A, Ritter J A. Advanced Materials, 2003, 15(2), 101.
5 Dutta S, Bhaumik A, Wu K C W. Energy & Environmental Science, 2014, 7(11), 3574.
6 Fechler N, Fellinger T P, Antonietti M. Advanced Materials, 2013, 25(1), 75.
7 Lee J, Kim J, Hyeon T. Advanced Materials, 2006, 18(16), 2073.
8 Liang C D, Li Z J, Dai S. Angewandte Chemie-International Edition, 2008, 47(20), 3696.
9 Titirici M M, White R J, Brun N, et al. Chemical Society Reviews, 2015, 44(1), 250.
10 Zhang H F, Cooper A I. Soft Matter, 2005, 1(2), 107.
11 Triantafillidis C, Elsaesser M S, Husing N. Chemical Society Reviews, 2013, 42(9), 3833.
12 Galassi C. Journaal of the European Ceramic Society, 2006, 26(14), 2951.
13 Lu Z Q H, Zhou Y C. Journal of Materials Science:Materials in Medicine, 1998, 9, 583.
14 Sofie S W, Dogan F. Journal of the American Ceramic Society, 2001, 84(7), 1459.
15 Fukasawa T, Ando M. Journal of the American Ceramic Society, 2001, 84(1), 230.
16 Deville S, Saiz E, Nalla R K, et al. Science, 2006, 311(5760), 515.
17 Deville S. Advanced Engineering Materials, 2008, 10(3), 155.
18 Shao G F, Hanaor D A H, Shen X D, et al. Advanced Materials, 2020, 32(17), 1907176.
19 Barrow M, Eltmimi A, Ahmed A, et al. Journal of Materials Chemistry, 2012, 22(23), 11615.
20 Zhang H F. Ice templating and freeze-drying for porous materials and their applications, Wiley-VCH, UK, 2018.
21 Searles J A, Carpenter J F, Randolph T W. Journal of Pharmaceutical Sciences, 2001, 90(7), 860.
22 Wegst U G K, Schecter M, Donius A E, et al. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2010, 368(1917), 2099.
23 Hahbazi M A S, Ghalkhani M, Maleki H. Advanced Engineering Materials, 2020, 22(7), 2000033.
24 Deville S. Journal of Materials Research, 2013, 28(17), 2202.
25 Roberts A D, Wang S X, Li X, et al. Journal of Materials Chemistry A, 2014, 2(42), 17787.
26 Zhang H F, Hussain I, Brust M, et al. Nature Materials, 2005, 4(10), 787.
27 Qian L, Zhang H F. Journal of Chemical Technology and Biotechnology, 2011, 86(2), 172.
28 Libbrecht K G. Annual Review of Materials Research, 2017, 47, 271.
29 Zhang H F, Wang D, Butler R, et al. Nature Nanotechnology, 2008, 3(8), 506.
30 Okaji R, Taki K, Nagamine S, et al. Journal of Applied Polymer Science, 2013, 130(1), 526.
31 Li R J, Zhang X T, Dong H L, et al. Advanced Materials, 2016, 28(8), 1697.
32 Deville S, Adrien J, Maire E, et al. Acta Materialia, 2013, 61(6), 2077.
33 Marcellini M, Noirjean C, Dedovets D, et al. ACS Omega, 2016, 1(5), 1019.
34 Tai K P, Liu Y, Dillon S J. Microscopy and Microanalysis, 2014, 20(2), 330.
35 He Z Y, Liu K, Wang J J. Accounts of Chemical Research, 2018, 51(5), 1082.
36 Deville S. Materials, 2010, 3(3), 1913.
37 Gutierrez M C, Ferrer M L, del Monte F. Chemistry of Materials, 2008, 20(3), 634.
38 Bai H, Chen Y, Delattre B, et al. Science Advances, 2015, 1(11), 1500849.
39 Zhang P P, Li J, Lv L X, et al. ACS Nano, 2017, 11(5), 5087.
40 Bai H, Walsh F, Gludovatz B, et al. Advanced Materials, 2016, 28(1), 50.
41 Tang Y F, Miao Q, Qiu S, et al. Journal of the European Ceramic Society, 2014, 34(15), 4077.
42 Wang C H, Chen X, Wang B, et al. ACS Nano, 2018, 12(6), 5816.
43 Munch E, Saiz E, Tomsia A P, et al. Journal of the American Ceramic Society, 2009, 92(7), 1534.
44 Delattre B, Bai H, Ritchie R O, et al. ACS Applied Materials & Interfaces, 2014, 6(1), 159.
45 Santos L N R M, Silva J R S, Cartaxo J M, et al. Cermica, 2021, 67(381), 1.
46 Ricciardi R, Auriemma F, Gaillet C, et al. Macromolecules, 2004, 37(25), 9510.
47 Willcox P J, Howie D W, Shimidt-Rohr K, et al. Journal of Polymer Science Part B:Polymer Physics, 1999, 37, 3438.
48 Tripathi A, Kathuria N, Kumar A. Journal of Biomedical Materials Research Part A, 2009, 90(3), 680.
49 Wu J J, Zhao Q, Liang C Z, et al. Soft Matter, 2013, 9(46), 11136.
50 Dogu S, Okay O. Polymer, 2008, 49(21), 4626.
51 Wat A, Lee J I, Ryu C W, et al. Nature Communications, 2019, 10, 961.
52 Yao Y M, Sun J J, Zeng X L, et al. Small, 2018, 14(13), 1704044.
53 Wang Z Y, Shen X, Han N M, et al. Chemistry of Materials, 2016, 28(18), 6731.
54 Munch E, Launey M E, Alsem D H, et al. Science, 2008, 322(5907), 1516.
55 D'Elia E, Barg S, Ni N, et al. Advanced Materials, 2015, 27(32), 4788.
56 Du G L, Mao A R, Yu J H, et al. Nature Communications, 2019, 10, 800.
57 Gannon P, Sofie S, Deibert M, et al. Journal of Applied Electrochemistry, 2009, 39(4), 497.
58 Nardecchia S, Serrano M C, Gutierrez M C, et al. Advanced Functional Materials, 2012, 22(21), 4411.
59 Ouyang A, Cao A Y, Hu S, et al. ACS Applied Materials & Interfaces, 2016, 8(17), 11179.
60 Klotz M, Weber M, Deville S, et al. Frontiers in Materials, 2018, 5, 00028.
61 Sahoo P K, Kumar N, Thiyagarajan S, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(6), 7475.
62 Fan X Q, Yang Y, Shi X L, et al. Advanced Functional Materials, 2020, 30(52), 2007110.
63 Xiao J L, Lv W Y, Song Y H, et al. Chemical Engineering Journal, 2018, 338, 202.
64 Yu R M, Shi Y Z, Yang D Z, et al. ACS Applied Materials & Interfaces, 2017, 9(26), 21809.
65 Ouyang A, Wang C H, Wu S T, et al. ACS Applied Materials & Interfaces, 2015, 7(26), 14439.
66 Ouyang A, Liang J. RSC Advances, 2014, 4(49), 25835.
67 Zhang R J, Hu R R, Li X M, et al. Advanced Functional Materials, 2018, 28(23), 1870161.
68 Yang J, Xia Y F, Xu P, et al. Cellulose, 2018, 25(6), 3533.
69 Jiang Y, Chen Y, Liu Y J, et al. Chemical Engineering Journal, 2018, 337, 522.
70 Mi H Y, Jing X, Politowicz A L, et al. Carbon, 2018, 132, 199.
71 Li C, Wu Z Y, Liang H W, et al. Small, 2017, 13(25), 1700453.
72 Qiu L, Huang B, He Z J, et al. Advanced Materials, 2017, 29(36), 1701553.
73 Yao Y M, Li Y M, Zeng X L, et al. Journal of Materials Chemistry A, 2018, 6(14), 5984.
74 Liao S C, Zhai T L, Xia H S. Journal of Materials Chemistry A, 2016, 4(3), 1068.
75 Barg S, Perez F M, Ni N, et al. Nature Communications, 2014, 5, 4328.
76 Sai H Z, Fu R, Xing L, et al. ACS Applied Materials & Interfaces, 2015, 7(13), 7373.
77 Chaichanawong J, Kongcharoen K, Areerat S. Advanced Powder Technology, 2013, 24(5), 891.
78 Zhao Z D, Sun M Q, Chen W J, et al. Sandwich Advanced Functional Materials, 2019, 29(16), 1809196.
79 Pan Z Z, Lv W, He Y B, et al. Advanced Science, 2018, 5(6), 1800384.
80 Kong J, Xiong G P, Bo Z, et al. Chemelectrochem, 2019, 6(10), 2788.
81 Shao Y L, El-Kady M F, Lin C W, et al. Advanced Materials, 2016, 28(31), 6719.
82 He Z M, Liu J, Qiao Y, et al. Nano Letters, 2012, 12(9), 4738.
83 Katuri K, Ferrer M L, Gutierrez M C, et al. Energy & Environmental Science, 2011, 4(10), 4201.
84 Gutierrez M C, Hortiguela M J, Amarilla J M, et al. Journal of Physical Chemistry C, 2007, 111(15), 5557.
85 Huang C, Leung C L A, Leung P, et al. Advanced Energy Materials, 2021, 11(1), 2002387.
86 Lichtner A Z, Jauffres D, Martin C L, et al. Journal of the American Ceramic Society, 2013, 96(9), 2745.
87 Moon J W, Hwang H J, Awano M, et al. Materials Letters, 2003, 57, 1428
88 Chen Y, Zhang Y X, Baker J, et al. ACS Applied Materials & Interfaces, 2014, 6(7), 5130.
89 Li D Y, Li M S. Journal of Materials Science & Technology, 2012, 28(9), 799.
90 Hammel E C, Ighodaro O L R, Okoli O I. Ceramics International, 2014, 40(10), 15351.
91 Fukushima M, Yoshizawa Y. Advanced Powder Technology, 2016, 27(3), 908.
92 Wang Z, Feng P Z, Wang X H, et al. Ceramics International, 2016, 42(10), 12414.
93 Maleki H, Fischer T, Bohr C, et al. Biomacromolecules, 2021, 22(4), 1739.
94 Yang P, Xia T, Ghosh S, et al. 2D Materials, 2021, 8(2), 025022.
95 Liu H, Li L Y, Li J T, et al. Ceramics International, 2021, 47(6), 8593.
96 Naglieri V, Gludovatz B, Tornsia A P, et al. Acta Materialia, 2015, 98, 141.
97 Hu Z J, Guo R F, Chen S M, et al. Scripta Materialia, 2020, 186, 312.
98 Knöller A, Kilper S, Diem A M, et al. Nano Letters, 2018, 18(4), 2519.
99 Chau M, De France K J, Kopera B, et al. Chemistry of Materials, 2016, 28(10), 3406.
100 Maleki H, Shahbazi M A, Montes S, et al. ACS Applied Materials & Interfaces, 2019, 11(19), 17256.
101 Wang L H, Qiu Y Y, Lv H J, et al. Advanced Functional Materials, 2019, 29(31), 1901407.
102 Zhang Y, Chen L J, Zeng J, et al. Materials Science & Engineering C-Materials for Biological Applications, 2014, 39, 143.
103 Meurice E, Bouchart F, Hornez J C, et al. Journal of the European Ceramic Society, 2016, 36(12), 2895.
104 Kim D H, Kim K L, Chun H H, et al. Ceramics International, 2014, 40(6), 8293.
105 Xia Z, Villa M M, Wei M. Journal of Materials Chemistry B, 2014, 2(14), 1998.
106 Deville S, Saiz E, Tomsia A P. Biomaterials, 2006, 27(32), 5480.
107 Yin K Y, Mylo M D, Speck T, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103826.
[1] 汤倩茜, 陈栋航, 张春杰, 王钢, 郭利民. 沸石分子筛用于挥发性有机物吸附的研究进展[J]. 材料导报, 2022, 36(Z1): 21050144-9.
[2] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[3] 王杨鑫, 邓强, 李成贵, 温永宇. 多糖/金属有机框架(MOFs)复合气凝胶的制备及应用进展[J]. 材料导报, 2022, 36(4): 20080197-10.
[4] 窦学铮, 蒋立武, 宋尽霞, 赵云松. 镍基单晶高温合金力学性能各向异性的研究进展[J]. 材料导报, 2022, 36(24): 21040222-15.
[5] 周国伟, 李枝兰, 王晓娇. 应力与取向调控超薄La0.7Sr0.3MnO3薄膜各向异性的研究[J]. 材料导报, 2022, 36(19): 21020016-6.
[6] 于长帅, 罗忠, 骆海涛, 何凤霞. 分层多孔材料声学建模和吸声性能预测方法研究[J]. 材料导报, 2022, 36(16): 21040182-5.
[7] 常超, 张辉, 来媛, 李良, 白晓旭. FeAlNiCrMn高熵合金结构稳定性和力学性能的第一性原理计算[J]. 材料导报, 2022, 36(14): 21040230-5.
[8] 杨鑫, 马文君, 王岩, 刘世锋, 张兆洋, 王婉琳, 王犇, 汤慧萍. 增材制造金属点阵多孔材料研究进展[J]. 材料导报, 2021, 35(7): 7114-7120.
[9] 罗涛, 马爱洁, 白海燕, 程勇博, 周宏伟. 磁诱导高取向水凝胶的构筑及功能[J]. 材料导报, 2021, 35(5): 5206-5213.
[10] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[11] 吴韶飞, 闫霆, 蒯子函, 潘卫国. 高各向异性十六酸/膨胀石墨定形相变储热材料的性能[J]. 材料导报, 2021, 35(4): 4186-4193.
[12] 贺文志, 邓承继, 丁军, 余超, 王杏, 祝洪喜. 多孔Mo2C/C复合陶瓷材料的制备及吸附性能[J]. 材料导报, 2021, 35(24): 24052-24056.
[13] 黄健康, 刘玉龙, 刘光银, 杨茂鸿, 樊丁. 微纳米尺度单晶铜各向异性纳米力学分析[J]. 材料导报, 2021, 35(24): 24117-24121.
[14] 于涵, 何雄, 张孔斌, 何斌, 罗丰, 孙志刚. 锗基半导体器件的界面磁阻效应和体磁阻效应[J]. 材料导报, 2021, 35(2): 2069-2073.
[15] 孙元平, 姚毅恒, 张淑娴, 马建新, 翁赟. 竹缠绕复合材料的线膨胀系数测试[J]. 材料导报, 2020, 34(Z1): 539-541.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed