Review of Porous Materials Derived from Using the Directional Freeze-casting Technique and Their Applications
YU Yanfei1, WANG Xuan1,2, GAO Xin3,*, NING Feng3, ZHANG Haopeng3, YUE Hongyan3
1 School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China 2 Key Laboratory of Engineering Dielectrics and Its Application, Harbin University of Science and Technology, Harbin 150080, China 3 School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
Abstract: Directional freeze casting is a method that uses the "liquid-solid-gas" phase transformation of solvents to obtain porous materials by uniformly mixing raw materials, solvents and additives. It has the advantages of simple operation and green environmental protection. Different from the usual pore-making technology, it offers a high degree of control over the physical, chemical and mechanical properties of materials, where the materials prepared by this technology have oriented pores and hierarchical structures at different levels. Because of these characteristics, this technique is widely used in anisotropic porous inorganic, organic, hybrid and carbonaceous materials. This method can also be extended to simulate the structures of natural materials to assemble porous composites with excellent mechanical and physical properties. Finally, the method offers wide application prospects in fields such as environmental science, energy, thermal management and biology. In this paper, based on the origins and principles of directional freezing technology, the formation mechanism of a directional structure is revealed based on the force model of single and multiple particles. The effects of the solute, solvent, temperature gradient, and additives on a structure and on the properties of the materials are analyzed. In addition, according to the different means of doping modification of precursor materials, the characteristics of directional structures prepared by one-step and two-step methods are introduced. Simultaneously, the research progress of directional freezing technology in pollutant adsorption, energy storage and conversion, structural materials, thermal management, and biomaterials are summarized. Finally, the problems that must be solved in the current research are briefly described, and future developmental directions are proposed.
通讯作者: *高鑫,博士,哈尔滨理工大学材料科学与化学工程学院讲师、硕士研究生导师。2012年在哈尔滨理工大学毕业,获学士学位。2015年在哈尔滨理工大学毕业,获硕士学位。2019年在哈尔滨理工大学毕业,获博士学位。主要从事金属基复合材料和新型纳米材料等方面的研究工作,近年来在相关领域发表SCI论文12篇,授权发明专利4项。gaoxin6825@126.com 岳红彦,博士,哈尔滨理工大学材料科学与化学工程学院教授、博士研究生导师。2002年在哈尔滨理工大学毕业,获学士学位。2005年在哈尔滨理工大学毕业,获硕士学位。2009年在哈尔滨工业大学材料物理与化学专业博士毕业,获工学博士学位。2012—2013年和2016—2018年,分别在韩国成均馆大学和美国凯斯西储大学作为访问学者。主要从事石墨烯增强金属基复合材料、纳米生物传感器、纳米材料在生物医学中的应用和新型能源存储材料(超级电容器)等方面的研究工作。近年来,在ACS Nano、Advanced Functional Materials、Biosensors and Bioelectronics、Carbon、Sensors and Actuators B:Chemical和Materials and Design等期刊发表论文70余篇,授权国家发明专利22项。hyyue@hrbust.edu.cn
1 Yang X Y, Chen L H, Li Y, et al. Chemical Society Reviews, 2017, 46(2), 481. 2 Sing K S W. Pure and Applied Chemistry, 1982, 54(11), 2201. 3 Roberts A D, Li X, Zhang H F. Chemical Society Reviews, 2014, 43(13), 4341. 4 Al-Muhtaseb S A, Ritter J A. Advanced Materials, 2003, 15(2), 101. 5 Dutta S, Bhaumik A, Wu K C W. Energy & Environmental Science, 2014, 7(11), 3574. 6 Fechler N, Fellinger T P, Antonietti M. Advanced Materials, 2013, 25(1), 75. 7 Lee J, Kim J, Hyeon T. Advanced Materials, 2006, 18(16), 2073. 8 Liang C D, Li Z J, Dai S. Angewandte Chemie-International Edition, 2008, 47(20), 3696. 9 Titirici M M, White R J, Brun N, et al. Chemical Society Reviews, 2015, 44(1), 250. 10 Zhang H F, Cooper A I. Soft Matter, 2005, 1(2), 107. 11 Triantafillidis C, Elsaesser M S, Husing N. Chemical Society Reviews, 2013, 42(9), 3833. 12 Galassi C. Journaal of the European Ceramic Society, 2006, 26(14), 2951. 13 Lu Z Q H, Zhou Y C. Journal of Materials Science:Materials in Medicine, 1998, 9, 583. 14 Sofie S W, Dogan F. Journal of the American Ceramic Society, 2001, 84(7), 1459. 15 Fukasawa T, Ando M. Journal of the American Ceramic Society, 2001, 84(1), 230. 16 Deville S, Saiz E, Nalla R K, et al. Science, 2006, 311(5760), 515. 17 Deville S. Advanced Engineering Materials, 2008, 10(3), 155. 18 Shao G F, Hanaor D A H, Shen X D, et al. Advanced Materials, 2020, 32(17), 1907176. 19 Barrow M, Eltmimi A, Ahmed A, et al. Journal of Materials Chemistry, 2012, 22(23), 11615. 20 Zhang H F. Ice templating and freeze-drying for porous materials and their applications, Wiley-VCH, UK, 2018. 21 Searles J A, Carpenter J F, Randolph T W. Journal of Pharmaceutical Sciences, 2001, 90(7), 860. 22 Wegst U G K, Schecter M, Donius A E, et al. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2010, 368(1917), 2099. 23 Hahbazi M A S, Ghalkhani M, Maleki H. Advanced Engineering Materials, 2020, 22(7), 2000033. 24 Deville S. Journal of Materials Research, 2013, 28(17), 2202. 25 Roberts A D, Wang S X, Li X, et al. Journal of Materials Chemistry A, 2014, 2(42), 17787. 26 Zhang H F, Hussain I, Brust M, et al. Nature Materials, 2005, 4(10), 787. 27 Qian L, Zhang H F. Journal of Chemical Technology and Biotechnology, 2011, 86(2), 172. 28 Libbrecht K G. Annual Review of Materials Research, 2017, 47, 271. 29 Zhang H F, Wang D, Butler R, et al. Nature Nanotechnology, 2008, 3(8), 506. 30 Okaji R, Taki K, Nagamine S, et al. Journal of Applied Polymer Science, 2013, 130(1), 526. 31 Li R J, Zhang X T, Dong H L, et al. Advanced Materials, 2016, 28(8), 1697. 32 Deville S, Adrien J, Maire E, et al. Acta Materialia, 2013, 61(6), 2077. 33 Marcellini M, Noirjean C, Dedovets D, et al. ACS Omega, 2016, 1(5), 1019. 34 Tai K P, Liu Y, Dillon S J. Microscopy and Microanalysis, 2014, 20(2), 330. 35 He Z Y, Liu K, Wang J J. Accounts of Chemical Research, 2018, 51(5), 1082. 36 Deville S. Materials, 2010, 3(3), 1913. 37 Gutierrez M C, Ferrer M L, del Monte F. Chemistry of Materials, 2008, 20(3), 634. 38 Bai H, Chen Y, Delattre B, et al. Science Advances, 2015, 1(11), 1500849. 39 Zhang P P, Li J, Lv L X, et al. ACS Nano, 2017, 11(5), 5087. 40 Bai H, Walsh F, Gludovatz B, et al. Advanced Materials, 2016, 28(1), 50. 41 Tang Y F, Miao Q, Qiu S, et al. Journal of the European Ceramic Society, 2014, 34(15), 4077. 42 Wang C H, Chen X, Wang B, et al. ACS Nano, 2018, 12(6), 5816. 43 Munch E, Saiz E, Tomsia A P, et al. Journal of the American Ceramic Society, 2009, 92(7), 1534. 44 Delattre B, Bai H, Ritchie R O, et al. ACS Applied Materials & Interfaces, 2014, 6(1), 159. 45 Santos L N R M, Silva J R S, Cartaxo J M, et al. Cermica, 2021, 67(381), 1. 46 Ricciardi R, Auriemma F, Gaillet C, et al. Macromolecules, 2004, 37(25), 9510. 47 Willcox P J, Howie D W, Shimidt-Rohr K, et al. Journal of Polymer Science Part B:Polymer Physics, 1999, 37, 3438. 48 Tripathi A, Kathuria N, Kumar A. Journal of Biomedical Materials Research Part A, 2009, 90(3), 680. 49 Wu J J, Zhao Q, Liang C Z, et al. Soft Matter, 2013, 9(46), 11136. 50 Dogu S, Okay O. Polymer, 2008, 49(21), 4626. 51 Wat A, Lee J I, Ryu C W, et al. Nature Communications, 2019, 10, 961. 52 Yao Y M, Sun J J, Zeng X L, et al. Small, 2018, 14(13), 1704044. 53 Wang Z Y, Shen X, Han N M, et al. Chemistry of Materials, 2016, 28(18), 6731. 54 Munch E, Launey M E, Alsem D H, et al. Science, 2008, 322(5907), 1516. 55 D'Elia E, Barg S, Ni N, et al. Advanced Materials, 2015, 27(32), 4788. 56 Du G L, Mao A R, Yu J H, et al. Nature Communications, 2019, 10, 800. 57 Gannon P, Sofie S, Deibert M, et al. Journal of Applied Electrochemistry, 2009, 39(4), 497. 58 Nardecchia S, Serrano M C, Gutierrez M C, et al. Advanced Functional Materials, 2012, 22(21), 4411. 59 Ouyang A, Cao A Y, Hu S, et al. ACS Applied Materials & Interfaces, 2016, 8(17), 11179. 60 Klotz M, Weber M, Deville S, et al. Frontiers in Materials, 2018, 5, 00028. 61 Sahoo P K, Kumar N, Thiyagarajan S, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(6), 7475. 62 Fan X Q, Yang Y, Shi X L, et al. Advanced Functional Materials, 2020, 30(52), 2007110. 63 Xiao J L, Lv W Y, Song Y H, et al. Chemical Engineering Journal, 2018, 338, 202. 64 Yu R M, Shi Y Z, Yang D Z, et al. ACS Applied Materials & Interfaces, 2017, 9(26), 21809. 65 Ouyang A, Wang C H, Wu S T, et al. ACS Applied Materials & Interfaces, 2015, 7(26), 14439. 66 Ouyang A, Liang J. RSC Advances, 2014, 4(49), 25835. 67 Zhang R J, Hu R R, Li X M, et al. Advanced Functional Materials, 2018, 28(23), 1870161. 68 Yang J, Xia Y F, Xu P, et al. Cellulose, 2018, 25(6), 3533. 69 Jiang Y, Chen Y, Liu Y J, et al. Chemical Engineering Journal, 2018, 337, 522. 70 Mi H Y, Jing X, Politowicz A L, et al. Carbon, 2018, 132, 199. 71 Li C, Wu Z Y, Liang H W, et al. Small, 2017, 13(25), 1700453. 72 Qiu L, Huang B, He Z J, et al. Advanced Materials, 2017, 29(36), 1701553. 73 Yao Y M, Li Y M, Zeng X L, et al. Journal of Materials Chemistry A, 2018, 6(14), 5984. 74 Liao S C, Zhai T L, Xia H S. Journal of Materials Chemistry A, 2016, 4(3), 1068. 75 Barg S, Perez F M, Ni N, et al. Nature Communications, 2014, 5, 4328. 76 Sai H Z, Fu R, Xing L, et al. ACS Applied Materials & Interfaces, 2015, 7(13), 7373. 77 Chaichanawong J, Kongcharoen K, Areerat S. Advanced Powder Technology, 2013, 24(5), 891. 78 Zhao Z D, Sun M Q, Chen W J, et al. Sandwich Advanced Functional Materials, 2019, 29(16), 1809196. 79 Pan Z Z, Lv W, He Y B, et al. Advanced Science, 2018, 5(6), 1800384. 80 Kong J, Xiong G P, Bo Z, et al. Chemelectrochem, 2019, 6(10), 2788. 81 Shao Y L, El-Kady M F, Lin C W, et al. Advanced Materials, 2016, 28(31), 6719. 82 He Z M, Liu J, Qiao Y, et al. Nano Letters, 2012, 12(9), 4738. 83 Katuri K, Ferrer M L, Gutierrez M C, et al. Energy & Environmental Science, 2011, 4(10), 4201. 84 Gutierrez M C, Hortiguela M J, Amarilla J M, et al. Journal of Physical Chemistry C, 2007, 111(15), 5557. 85 Huang C, Leung C L A, Leung P, et al. Advanced Energy Materials, 2021, 11(1), 2002387. 86 Lichtner A Z, Jauffres D, Martin C L, et al. Journal of the American Ceramic Society, 2013, 96(9), 2745. 87 Moon J W, Hwang H J, Awano M, et al. Materials Letters, 2003, 57, 1428 88 Chen Y, Zhang Y X, Baker J, et al. ACS Applied Materials & Interfaces, 2014, 6(7), 5130. 89 Li D Y, Li M S. Journal of Materials Science & Technology, 2012, 28(9), 799. 90 Hammel E C, Ighodaro O L R, Okoli O I. Ceramics International, 2014, 40(10), 15351. 91 Fukushima M, Yoshizawa Y. Advanced Powder Technology, 2016, 27(3), 908. 92 Wang Z, Feng P Z, Wang X H, et al. Ceramics International, 2016, 42(10), 12414. 93 Maleki H, Fischer T, Bohr C, et al. Biomacromolecules, 2021, 22(4), 1739. 94 Yang P, Xia T, Ghosh S, et al. 2D Materials, 2021, 8(2), 025022. 95 Liu H, Li L Y, Li J T, et al. Ceramics International, 2021, 47(6), 8593. 96 Naglieri V, Gludovatz B, Tornsia A P, et al. Acta Materialia, 2015, 98, 141. 97 Hu Z J, Guo R F, Chen S M, et al. Scripta Materialia, 2020, 186, 312. 98 Knöller A, Kilper S, Diem A M, et al. Nano Letters, 2018, 18(4), 2519. 99 Chau M, De France K J, Kopera B, et al. Chemistry of Materials, 2016, 28(10), 3406. 100 Maleki H, Shahbazi M A, Montes S, et al. ACS Applied Materials & Interfaces, 2019, 11(19), 17256. 101 Wang L H, Qiu Y Y, Lv H J, et al. Advanced Functional Materials, 2019, 29(31), 1901407. 102 Zhang Y, Chen L J, Zeng J, et al. Materials Science & Engineering C-Materials for Biological Applications, 2014, 39, 143. 103 Meurice E, Bouchart F, Hornez J C, et al. Journal of the European Ceramic Society, 2016, 36(12), 2895. 104 Kim D H, Kim K L, Chun H H, et al. Ceramics International, 2014, 40(6), 8293. 105 Xia Z, Villa M M, Wei M. Journal of Materials Chemistry B, 2014, 2(14), 1998. 106 Deville S, Saiz E, Tomsia A P. Biomaterials, 2006, 27(32), 5480. 107 Yin K Y, Mylo M D, Speck T, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103826.