Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24040131-7    https://doi.org/10.11896/cldb.24040131
  无机非金属及其复合材料 |
NiO@CoFe LDH/NF纳米片阵列用于高效析氧反应
薛世翔, 吴攀, 赵亮, 雷琬莹*
西安建筑科技大学材料科学与工程学院,西安 710055
NiO@CoFe LDH/NF Nanosheet Arrays for Efficient Oxygen Evolution Reaction
XUE Shixiang, WU Pan, ZHAO Liang, LEI Wanying*
College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
下载:  全 文 ( PDF ) ( 22203KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 开发高效、稳定且廉价的析氧(OER)催化剂是提高电解水效率、降低电解槽成本的关键。通过水热、退火和水热三步合成法,在泡沫镍(NF)基底上制备NiO纳米片阵列,钴铁水滑石(CoFe LDH)纳米片沿着氧化镍(NiO)的生长方向原位合成,构建具有三明治结构的NiO@CoFe LDH/NF自支撑电极,厚度约为110 nm,片层间的堆叠使得NiO和CoFe LDH的界面处紧密结合,改变了复合材料的电子结构,形成了更多有利于OER反应的高价态Co3+。此电极在碱性溶液中表现出优异的OER性能,其过电势为224 mV(10 mA·cm-2)和303 mV(100 mA·cm-2),Tafel斜率为52 mV·dec-1,并且具有很好的稳定性。由机理分析可知,NiO和CoFe LDH之间较大的接触界面和紧密的相互作用使得两组分之间发生电子转移,由此能够产生较多的活性位点,从而提高了催化剂的本征活性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛世翔
吴攀
赵亮
雷琬莹
关键词:  氧化镍  钴铁水滑石  界面作用  电解水  析氧反应    
Abstract: Exploring efficient, stable and inexpensive oxygen evolution reaction (OER) catalysts is the key to improve the efficiency of water electrolysis and reduce the cost of the electrolytic bath. By a three-step strategy combining hydrothermal, annealing and hydrothermal processes, NiO nanosheets arrays were prepared onto the substrate of Ni foam (NF), CoFe layer double hydroxide (CoFe LDH) nanosheets was in-situ synthesized along with the direction of nickel oxide (NiO) to construct self-supported NiO@CoFe LDH/NF electrode with sandwich structure. The thickness is about 110 nm, the interface of NiO and CoFe LDH is in close contact between this layer by layer stacking structure that could regulate the electronic structure of nanohybrids, generating a large amount of high valence of Co3+ and then improving the OER activity. The obtained electrode exhibits superior OER activity in alkaline solution with a lower overpotential of 224 mV (10 mA·cm-2) and 303 mV (100 mA·cm-2), a smaller Tafel slope of 52 mV·dec-1 and good durability. Mechanism analysis demonstrates this outstanding performance is ascribed to the large contact area and strong interfacial interaction between NiO and CoFe LDH, that enable electron transfer between two components, which could form the abundant active sites and then promote the intrinsic activity of catalysts.
Key words:  nickel oxide    CoFe LDH    interfacial interaction    electrocatalytic water splitting    oxygen evolution reaction
发布日期:  2025-05-29
ZTFLH:  TB333  
基金资助: 国家自然科学基金(519002243); 陕西省自然科学基础研究计划(2024JC-YBQN-0155);陕西省教育厅重点科研计划项目(22JY039)
通讯作者:  *雷琬莹,博士,西安建筑科技大学材料科学与工程学院副教授、硕士研究生导师。目前主要从事纳米材料制备、能源转换和光电催化等方面的研究工作。leiwy@xauat.edu.cn   
作者简介:  薛世翔,硕士,西安建筑科技大学。目前主要研究领域为纳米材料的制备和电催化。
引用本文:    
薛世翔, 吴攀, 赵亮, 雷琬莹. NiO@CoFe LDH/NF纳米片阵列用于高效析氧反应[J]. 材料导报, 2025, 39(11): 24040131-7.
XUE Shixiang, WU Pan, ZHAO Liang, LEI Wanying. NiO@CoFe LDH/NF Nanosheet Arrays for Efficient Oxygen Evolution Reaction. Materials Reports, 2025, 39(11): 24040131-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040131  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24040131
1 Tahir M, Pan L, Idrees F, et al. Nano Energy, 2017, 37, 136.
2 Tan C L, Cao X H, Wu X J, et al. Chemical Reviews, 2017, 117(9), 6225.
3 Abdalla A M, Hossain S, Nisfindy O B, et al. Energy Conversion and Management, 2018, 165, 602.
4 Zhang Y C, Han C, Gao J, et al. ACS Catalysis, 2021, 11(20), 12485.
5 Li Q, Chen Q, Jiang K, et al. International Journal of Hydrogen Energy, 2023, 48(46), 17501.
6 Li Q, Chen Q, Lei S, et al. Journal of Colloid and Interface Science, 2023, 631, 56.
7 Gu H Y, Shi G S, Chen H C, et al. ACS Energy Letters, 2020, 5(10), 3185.
8 Feng Y Q, Wang R, Dong P P, et al. ACS Applied Materials & Interfaces, 2021, 13(41), 48949.
9 Sun X, Guan X, Feng H, et al. Journal of Colloid and Interface Science, 2021, 604, 719.
10 Karmakar A, Karthick K, Sankar S S, et al. Journal of Materials Che-mistry A, 2021, 9(3), 1314.
11 Zhou Y, Hu J L, Yang L C, et al. Chinese Chemical Letters, 2022, 33(6), 2845.
12 Lei Y, Zhang L, Zhou D, et al. Renewable Energy, 2022, 194, 459.
13 Dou S, Wang X, Wang S. Small Methods, 2019, 3(1), 1800211.
14 Wang Y, Yan D, El Hankari S, et al. Advanced Science, 2018, 5(8), 1800064.
15 Yang L, Zhu G, Wen H, et al. Journal of Materials Chemistry A, 2019, 7(15), 8771.
16 Feng H, Sun X, Guan X, et al. Flatchem, 2021, 26, 100225.
17 Mechili M, Vaitsis C, Argirusis N, et al. Renewable and Sustainable Energy Reviews, 2022, 156, 111970.
18 Liu P, Ran J, Xia B, et al. Nano-Micro Letters, 2020, 12(1), 68.
19 Khan N A, Rashid N, Junaid M, et al. ACS Applied Energy Materials, 2019, 2(5), 3587.
20 Zhu Y X, Jiang M Y, Liu M, et al. Nanoscale, 2020, 12(6), 3803.
21 QayoomMugheri A, AneelaTahira, Aftab U, et al. Electrochimica Acta, 2019, 306, 9.
22 Sirisomboonchai S, Li S S, Yoshida A, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(2), 2327.
23 Zhang Y X, Yang M, Jiang X, et al. Journal of Alloys and Compounds, 2020, 818, 153345.
24 Lv J J, Wang L M, Li R S, et al. ACS Catalysis, 2021, 11(23), 14338.
25 Gao Z W, Ma T, Chen X M, et al. Small, 2018, 14(17), 1800195.
26 Tian M, Jiang Y, Tong H L, et al. ChemNanoMat, 2020, 6(1), 154.
27 He K, Tsega T T, Liu X, et al. Angewandte Chemie-International Edition, 2019, 58(34), 11903.
28 Xie Y M, Wang X F, Tang K, et al. Electrochimica Acta, 2018, 264, 225.
29 Bao J, Zhang X D, Fan B, et al. Angewandte Chemie International Edition, 2015, 54(25), 7399.
30 Gebreslase G A, Martínez-Huerta M V, Lázaro M J. Journal of Energy Chemistry, 2022, 67(4), 101.
31 Zhou T, Cao Z, Wang H, et al. RSC Advances, 2017, 7(37), 22818.
32 Arif M, Yasin G, Shakeel M, et al. Materials Chemistry Frontiers, 2019, 3(3), 520.
33 Hao C, Wu Y, An Y, et al. Materials Today Energy, 2019, 12, 453.
34 Ma P, Yang H, Luo Y, et al. ChemSusChem, 2019, 12(19), 4442.
35 Huang Y, Chen X, Ge S, et al. Catalysis Science & Technology, 2020, 10(5), 1292.
36 Gao W, Xia Z M, Cao F X, et al. Advanced Functioanl Materials, 2018, 28(11), 1706056.
37 Tahir M, Pan L, Zhang R R, et al. ACS Energy Letters, 2017, 2(9), 2177.
38 Zhang J Y, Qian J M, Ran J Q, et al. ACS Catalysis, 2020, 10(21), 12376.
[1] 赵涔凯, 邹杰鑫, 王旻, 李思明, 赵微, 张时林, 滕珏瑾, 王艳皎, 吴明铂, 胡涵, 李亚伟. 基于阴离子交换膜电解水的离聚物研究进展[J]. 材料导报, 2024, 38(8): 23080132-11.
[2] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[3] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[4] 邓开鑫, 刘澄虎, 于志庆, 黄文斌, 魏强, 周亚松. 碳化钼的结构、制备及应用研究进展[J]. 材料导报, 2024, 38(5): 22080058-18.
[5] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[6] 柴瑞瑞, 桑欣欣, 欧世国, 李家豪, 王大伟. 生物基MOFs衍生Co9S8/N,O-C电催化剂的析氧性能[J]. 材料导报, 2024, 38(19): 22120095-8.
[7] 刘向阳, 王议, 夏爽, 刘中清. 镍铁双氢氧化物的响应曲面法优化生长和电催化析氧性能研究[J]. 材料导报, 2024, 38(16): 23040152-5.
[8] 林坚, 张松林, 王悦安, 孙浩, 聂钰昌, 陈德睢. 氧化镍空穴材料在Ⅱ-Ⅵ族量子点电致发光器件中的应用进展[J]. 材料导报, 2024, 38(14): 22100205-8.
[9] 狄大程, 李明哲, 李羿龙, 凌子昱, 吕玉珍, 陈克丕. 质子交换膜电解水用非贵金属基析氧反应催化剂的研究进展[J]. 材料导报, 2024, 38(13): 23020032-16.
[10] 陈亚楠, 刘培涛, 祖延清, 韩逢博, 李晓东, 毕鹏飞, 冯爱玲. 基于N,P共掺杂碳纳米片的富S空位Co/Co9S8复合物作为双功能催化剂用于可充锌-空气电池[J]. 材料导报, 2024, 38(12): 23010013-5.
[11] 吴智恒, 黄伊琳, 毕雁冰, 梁立喆, 归立发, 李卫庆, 沈培康, 田植群. 石墨烯及其衍生物改性沥青的研究进展[J]. 材料导报, 2024, 38(1): 22040410-9.
[12] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[13] 赵帅凯, 李亚如, 任永鹏, 王长记, 潘昆明, 王利萌, 吕贝贝, 夏梁彬, 陈雪敏. ZIF衍生材料在ORR、OER和HER领域的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010012-12.
[14] 王叶超, 肖遥, 胡芳馨, 杨鸿斌. 不锈钢催化电极在氧析出中的研究进展[J]. 材料导报, 2023, 37(20): 22040218-11.
[15] 王思弘, 宋钫. 金属氧化物电催化析氧机理的研究进展[J]. 材料导报, 2022, 36(23): 21030163-13.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed