Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22040410-9    https://doi.org/10.11896/cldb.22040410
  无机非金属及其复合材料 |
石墨烯及其衍生物改性沥青的研究进展
吴智恒1,2, 黄伊琳1,2, 毕雁冰3,*, 梁立喆1,2, 归立发4, 李卫庆5, 沈培康1,2, 田植群1,2,*
1 省部共建特色金属材料与组合结构全寿命安全国家重点实验室,南宁 530004
2 广西大学物理科学工程技术学院可再生能源协同创新中心,南宁 530004
3 广西壮族自治区交通运输厅,南宁 530012
4 广西正路机械科技股份有限公司,南宁 530218
5 广西正通工程技术有限公司,南宁 530218
Research Progress of Asphalt Modified by Graphene and Its Derivatives
WU Zhiheng1,2, HUANG Yilin1,2, BI Yanbing3,*, LIANG Lizhe1,2, GUI Lifa4, LI Weiqing5, SHEN Peikang1,2, TIAN Zhiqun1,2,*
1 State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
2 Collaborative Innovation Center of Sustainable Energy Materials, College of Physical Sciences, Engineering and Technology, Guangxi University, Nanning 530004, China
3 Department of Transport of Guangxi Zhuang Autonomous Region, Nanning 530012, China
4 Guangxi Zhenglu Machinery Technology Company Limited, Nanning 530218, China
5 Guangxi Zhengtong Engineering Technology Company Limited, Nanning 530218, China
下载:  全 文 ( PDF ) ( 26675KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯及其衍生物等新型纳米碳材料,因其优异的力学性能、巨大的比表面积和良好的导电导热性能等性质,作为纳米改性剂在沥青领域得到了重点关注,可显著提高改性沥青的高低温性能以及抗疲劳性能,有望解决传统改性沥青耐久性差的问题。本文系统总结了石墨烯及其衍生物改性沥青的最新研究进展,从石墨烯结构和表面特性的角度重点评述了石墨烯含量、层数、孔缺陷、表面化学态对沥青改性效果的影响及改性机理,同时介绍了石墨烯改性沥青的实际工程应用情况。最后针对石墨烯改性沥青性能与两者之间的相容性的依赖关系,提出了利用孔缺陷和元素掺杂石墨烯促进石墨烯在沥青中的分散及相容性的研究新策略。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴智恒
黄伊琳
毕雁冰
梁立喆
归立发
李卫庆
沈培康
田植群
关键词:  沥青  功能化石墨烯  界面作用  石墨烯改性沥青    
Abstract: Graphene and graphene derivatives with two-dimension structures have been received much attention in the field of asphalt modification due to their excellent mechanical properties, high specific surface area, and good electrical and thermal conductivity, which can obviously enhance the high and low temperature performance and fatigue resistance of asphalt. Therefore, they are expected to solve the poor durability of traditional modified asphalt. This review summarizes the latest research works on the graphene and its derivatives modified asphalt, focusing on key influencing factors (content, layer number and defect, chemical state of graphene) for the asphalt modification as well as their modification mechanism from the viewpoint of graphene intrinsic characteristics and asphalt at molecular level, and introduces the practical engineering application of graphene modified asphalt. Finally, a new strategy of using pore defects and element doped graphene to promote the dispersion and compatibility of graphene in asphalt is proposed, according to the relationship between the performance of graphene modified asphalt and the compatibility between them.
Key words:  asphalt    functional graphene    interfacial interaction    graphene-modified asphalt
发布日期:  2024-01-16
ZTFLH:  U414  
基金资助: 广西科技计划项目(AB16380030); 广西大学学科交叉科研项目(2022JCB005)
通讯作者:  毕雁冰,博士,广西壮族自治区交通厅科教处副处长;2004年博士毕业于吉林大学车辆工程专业;长期从事道路工程的管理和技术研发工作。发表高水平论文15篇,获专利4项、省部级奖励4项。513554403@qq.com;
田植群,博士,广西大学物理科学与工程技术学院教授、博士研究生导师。2004年博士毕业于华南理工大学环境工程专业,先后在中科院大连化物所和新加坡南洋理工大学从事博士后研究(2005—2007年),随后加入新加坡科技发展局化学与工程科学研究所工作(2007—2015年)。2015年入职广西大学以来,聚焦先进碳基功能材料的研究,主要从事稀贵金属/石墨烯化学能源存储与转化基础及工程应用、石墨烯制备及应用研究。先后主持国家自然科学基金面上项目、国家重点研发计划(任务),广西重点研发计划和广西创新驱动发展专项(课题)等项目。近年来,在Advanced Energy Materials 、Nano Letters、Chemical Engineering Journal等期刊发表论文70余篇,授权专利 10 项。tianzhiqun@gxu.edu.cn   
作者简介:  吴智恒,2020年7月毕业于兰州交通大学土木工程学院,获工学学士学位。现为广西大学资源环境与材料学院材料工程专业硕士研究生,主要研究领域为纳米增强沥青路面材料。
引用本文:    
吴智恒, 黄伊琳, 毕雁冰, 梁立喆, 归立发, 李卫庆, 沈培康, 田植群. 石墨烯及其衍生物改性沥青的研究进展[J]. 材料导报, 2024, 38(1): 22040410-9.
WU Zhiheng, HUANG Yilin, BI Yanbing, LIANG Lizhe, GUI Lifa, LI Weiqing, SHEN Peikang, TIAN Zhiqun. Research Progress of Asphalt Modified by Graphene and Its Derivatives. Materials Reports, 2024, 38(1): 22040410-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22040410  或          https://www.mater-rep.com/CN/Y2024/V38/I1/22040410
1 Gedik A. Resources Conservation and Recycling, 2020, 161, 104956.
2 Wang T, X F, Zhu X, et al. Journal of Cleaner Production, 2018, 180, 139.
3 Xiao F, Su N, Yao S, et al. Journal of Cleaner Production, 2019, 211, 1299.
4 Zhang R, Tang N, Zhu H, et al. Journal of Cleaner Production, 2022, 340, 130791.
5 Khare P, Machesky J, Soto R, et al. Science Advances, 2020, 6(36), 9785 .
6 Sun G, Zhu X, Zhang Q, et al. Science of the Total Environment, 2022, 813, 152601.
7 Wang Y, Chong D, Wen Y. Construction and Building Materials, 2017, 150, 157.
8 Yan C, Huang W, Lin P, et al. Fuel, 2019, 252, 417.
9 Sienkiewicz M, Borzedowska-labuda K, Wojtliewicz A, et al. Fuel Processing Technology, 2017, 159, 272.
10 Wang X, Hong L, Wu H, et al. Construction and Building Materials, 2021, 271, 121881.
11 Han L, Zheng M, Wang C. Construction and Building Materials, 2016, 128, 399.
12 Xu G, Kong P, Yu Y, et al. Journal of Cleaner Production, 2022, 332, 130113.
13 Al hanwesah H, Sadique M, Harrris C, et al. Sustainability, 2021, 13(12), 6634.
14 Fathollahi A, Makoundou C, Coupe S J, et al. The Science of the Total Environment, 2022, 826, 153983.
15 Saltan M, Terzi S, Karahancer S. Construction and Building Materials, 2018, 173, 228.
16 Chen S, Zhang B, He X, et al. Construction and Building Materials, 2022, 321, 126356.
17 Zhang D, Zheng Y, Yuan G, et al. Construction and Building Materials, 2022, 324, 126552.
18 Jin J, Gao Y, Wu Y, et al. Powder Technology, 2021, 377, 212.
19 Lopes Crucho J M, Coelho Das Neves J M, Capitao S D, et al. Construction and Building Materials, 2019, 214, 178.
20 Yang X, Shen A, Guo Y, et al. Road Materials and Pavement Design, 2021, 22(8), 1708.
21 Moretti L, Fabrizi N, Fiore N, et al. Materials, 2021, 14(9), 2434.
22 Wu S, Tahri O. Road Materials and Pavement Design, 2021, 22(4), 735.
23 Li L, Yang L, Lin Y, et al. Advances in Materials Science and Enginee-ring, 2021, 2021(3), 1.
24 Han M, Muhammad Y, Wei Y, et al. Construction and Building Materials, 2021, 285, 122885.
25 He J, Hu W, Xiao R, et al. Construction and Building Materials, 2022, 330, 127222.
26 Wick P, Louw-gaume A E, Kucki M, et al . Angewandte Chemie-International Edition, 2014, 53(30), 7714.
27 Huang X, Yin Z, Wu S, et al. Small, 2011, 7(14), 1876.
28 Singh V, Joung D, Zhai L, et al. Progress in Materials Science, 2011, 56(8), 1178.
29 Tan X, Yuan Q, Qiu M, et al. Journal of Materials Science & Technoloy, 2022, 117, 238.
30 Nieto A, Lahiri D, Aaarwal. Carbon, 2012, 50(11), 4068.
31 Li X, Wang Y, Wu Y, et al. Construction and Building Materials, 2021, 272, 121919.
32 Li K, Ren H, Huang W. Materials, 2021, 14(17), 4846.
33 Yang L, Zhou D, Kang Y. Nanomaterials, 2020, 10(11), 2179.
34 Yang Q, Liu Q, Zhong J, et al. Construction and Building Materials, 2019, 201, 580.
35 Nazki M A, Chopra T, Chandrappa A K. Construction and Building Materials, 2020, 238, 117693.
36 Yan T, Ingrassia L P, Kumar R, et al. Materials, 2020, 13(3), 772.
37 Hafeez M, Ahmad N, Kamal M A, et al. Applied Sciences-Basel, 2019, 9(4), 686.
38 Wang Z, Dai Q, Guo S, et al. Construction and Building Materials, 2017, 134, 412.
39 Le J L, Marasteanu M O, Turos M. Road Materials and Pavement Design, 2020, 21(7), 1799.
40 Zhou H Y, Dou H B, Chen X H. Materials, 2021, 14(14), 3986.
41 Zhang X, Huang G, Zhou C, et al. Journal of Central South University of Science and Technology, 2019, 50(7), 1637.
42 Zhao W, Xie X, Li G, et al. Advances in Materials Science and Enginee-ring, 2020, 2020, 16.
43 Zheng W, Wang H, Chen Y, et al. Construction and Building Materials, 2021, 297.
44 Polacco G, Filippi S, Merusi F, et al. Advances in Colloid and Interface Science, 2015, 224, 72.
45 Li C, Wu S, Chen Z, et al. Construction and Building Materials, 2018, 189, 757.
46 Li X, Wang Y, Wu Y, et al. Materials, 2021, 14(13), 3677.
47 Singh B B, Mohanty F, Das S S, et al. Journal of Traffic and Transportation Engineering-English Edition, 2020, 7(5), 652.
48 Liu J, Hao P, Dou Z, et al. Construction and Building Materials, 2021, 305, 124512.
49 Wang Y, Li S, Yang H, et al. RSC Advances, 2020, 10(26), 15328.
50 Li J, Duan S, Muhanmmad Y, et al. Polymer Testing, 2020, 85, 106388.
51 Han M, Li J, Muhanmmad Y, et al. Diamond and Related Materials, 2018, 89, 140.
52 Li J, Han M, Muhanmmad Y, et al. Polymers, 2018, 10(11), 48231.
53 Duan S, Li J, Muhanmmad Y, et al. Journal of Applied Polymer Science, 2019, 136(46), 48231.
54 Liu J, Hao P, Jiang W, et al. Construction and Building Materials, 2021, 298, 123850.
55 Yu R, Wang Q, Wang W, et al. Materials & Design, 2021, 209, 109994.
56 Hu K, Yu C, Yang Q, et al. Materials & Design, 2021, 208, 109901.
57 Wu S, Zhao Z, Li Y, et al. Applied Sciences-Basel, 2017, 7(7), 702.
58 Wang R, Yue J, Li R, et al. Journal of Materials in Civil Engineering, 2019, 31(11), 04019274.
59 Guo T, Wang C, Chen H, et al. Petroleum Science and Technology, 2019, 37(21), 2190.
60 Su Z, Muhammad Y, Sahibzada M, et al. Construction and Building Materials, 2019, 229, 116836.
61 Li J, Zhang F, Muhammad Y, et al. Construction and Building Materials, 2019, 227, 117079.
62 Han M, Li J, Muhammad Y, et al. Construction and Building Materials, 2018, 174, 108.
63 Nie F, Jiang W, Lau D. Carbon, 2021, 182, 615.
64 Liu K, Zhang K, Wu J, et al. Journal of Cleaner Production, 2018, 193, 87.
65 Zeng Q, Liu Y, Liu Q, et al. Construction and Building Materials, 2020, 238, 117706.
66 Zhang X, He J X, Huang G, et al. Materials, 2019, 12(5), 757.
67 Li S, Xu W, Zhang F, et al. PloS One, 2022, 17(3), e0262467.
68 Li Y, Wu S, Amirkhanian S. Construction and Building Materials, 2018, 165, 572.
69 Adnan A M, Lu C, Luo X, et al. Materials, 2021, 14(11), 3073.
70 Iterchimica. World Highways, 2021, 42. https://www.worldhighways.com/feature/building-green-nanotechnology
71 田植群, 梁立喆, 沈培康, 等. 中国专利, ZL201810942059. 0, 2021.
72 田植群, 沈培康, 翁晓娜, 等. 中国专利, ZL201810637994. 6, 2021.
73 Website News Center of Guangxi University, Journal of Municipal Technology, 2018, 36(4), 1 (in Chinese).
广西大学网站新闻中心. 市政技术, 2018, 36(4), 1.
[1] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[2] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[3] 兰添晖, 刘旭, 贾存兴, 王凌一, 张军朝, 马国伟, 张默. 沥青胶结料应变延迟恢复特性的动态剪切流变试验表征[J]. 材料导报, 2024, 38(4): 22020138-7.
[4] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[5] 周铭钰, 刘曙光, 吴超凡, 刘军, 张恒龙, 张帅, 李启石. 基于水性环氧乳化沥青的超薄磨耗层级配设计及性能对比研究[J]. 材料导报, 2024, 38(24): 23110085-8.
[6] 刘圣洁, 曹旭, 张钰林, 傅永腾, 焦晓东. 水性环氧树脂复合改性乳化沥青固化行为及性能研究[J]. 材料导报, 2024, 38(24): 23090085-7.
[7] 王黎明, 孙永卓, 庞宏, 许继新, 董明泽. 微波加热对石油沥青的化学、流变及工程特性的影响[J]. 材料导报, 2024, 38(24): 23120216-8.
[8] 牛冬瑜, 黄山, 师伟博, 谢希望, 汪严, 高仰明. 粗集料接触配位参数影响下沥青混合料的抗断裂特性研究[J]. 材料导报, 2024, 38(23): 23050048-10.
[9] 董素芬, 宋泽轩, 张文辉, 黄智德, 韩宝国. 热诱导自愈合沥青混凝土研究综述:一种可持续路面材料[J]. 材料导报, 2024, 38(22): 23080062-12.
[10] 季节, 张梓源, 文龙, 尤鹏超, 马童, 黄昶惟. 粉胶比对煤直接液化残渣复合改性沥青胶浆及混合料低温性能的影响[J]. 材料导报, 2024, 38(22): 23090053-7.
[11] 虞将苗, 冯致皓, 陈富达, 于华洋. 乳化沥青冷再生路面研究进展:材料特性、组成设计及性能评价[J]. 材料导报, 2024, 38(22): 24030095-10.
[12] 司春棣, 崔亚宁, 李松, 贾彦顺, 凡涛涛, 张义. 铁尾矿在沥青路面中的资源化利用研究进展与展望[J]. 材料导报, 2024, 38(22): 24050001-13.
[13] 何印章, 熊坤, 张久鹏, 李哲, 李岩. 基于SARA组分调和沥青流变性能、粘附性自愈合性能研究[J]. 材料导报, 2024, 38(22): 24050184-8.
[14] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[15] 唐杰, 赵华, 高红成. 碳化硅粉填充沥青混合料微波自愈合性能及合理掺量[J]. 材料导报, 2024, 38(20): 23080070-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed