Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 23020032-16    https://doi.org/10.11896/cldb.23020032
  无机非金属及其复合材料 |
质子交换膜电解水用非贵金属基析氧反应催化剂的研究进展
狄大程, 李明哲, 李羿龙, 凌子昱, 吕玉珍*, 陈克丕
华北电力大学能源动力与机械工程学院,北京 102206
Research Progress of Non-noble Metal-based Oxygen Evolution Catalyst for Proton Exchange Membrane Water Electrolysis
DI Dacheng, LI Mingzhe, LI Yilong, LING Ziyu, LYU Yuzhen*, CHEN Kepi
School of Energy, Power and Mechanical Engineering , North China Electric Power University, Beijing 102206, China
下载:  全 文 ( PDF ) ( 51586KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 质子交换膜(PEM)电解水制氢技术是可再生能源存储与转化的重要技术手段。目前,国内外研究者在非贵金属析氧反应(OER)催化剂方面开展了大量的工作。但是,在PEM电解水阳极的强酸性条件下,催化剂仍难以兼顾催化活性和稳定性。为此,本文对PEM电解水用非贵金属酸性介质OER催化剂的研究进行了系统总结和分析。首先,基于PEM装置的工作特点提出了PEM电解水用OER催化剂的性能指标;第二,阐述了OER催化过程的基本原理;第三,系统介绍了碳基材料、过渡金属氧化物、过渡金属硫化物、过渡金属磷化物和多金属氧酸盐等非贵金属OER催化剂的研究进展,重点分析了其催化活性和稳定性的改进策略;最后,从PEM电解水需求和材料改性两方面对OER催化剂的设计进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
狄大程
李明哲
李羿龙
凌子昱
吕玉珍
陈克丕
关键词:  PEM电解水  析氧反应  酸性介质  非贵金属    
Abstract: Proton exchange membrane (PEM) water electrolysis for hydrogen production is an important technology for renewable energy storage and conversion. At present, extensive studies have been focused on the non-noble metal-based oxygen evolution reaction (OER) catalyst. A variety of catalysts have been explored, but it is still a challenge to remain catalytic activity and stability under the strong acidic condition of PEM water anode. Progress on OER catalyst of non-noble metal under acid medium is summarized in this work for PEM water electrolysis. Firstly, the performance index of OER catalyst for water electrolysis is proposed based on the working characteristics of PEM device. Secondly, the basic principle of OER catalysis is described. Thirdly, the research progress of non-noble metal OER catalysts, including carbon-based materials, transition metal oxides, transition metal sulfides, transition metal phosphates and polyoxometalates is systematically reviewed, and the improvement strategies for catalytic activity and stability are emphatically analyzed. Finally, the design of OER catalyst is prospected from two aspects of actual demand and material modification for PEM.
Key words:  PEM water electrolysis    OER    acid medium    non-precious metal
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  O643.36  
基金资助: 国家重点研究计划项目子课题(2018YFB0604302-04)
通讯作者:  *吕玉珍,华北电力大学能源动力与机械工程学院教授,主要从事纳米功能材料与涂层的设计合成、性能调控及电解水制氢领域的应用研究,已发表SCI收录论文60多篇。yzlv@ncepu.edu.cn   
作者简介:  狄大程,2018年6月毕业于华北电力大学,获得工学学士学位,现为华北电力大学材料科学与工程专业硕士研究生,主要研究领域为非贵金属催化剂的制备与性能调控。
引用本文:    
狄大程, 李明哲, 李羿龙, 凌子昱, 吕玉珍, 陈克丕. 质子交换膜电解水用非贵金属基析氧反应催化剂的研究进展[J]. 材料导报, 2024, 38(13): 23020032-16.
DI Dacheng, LI Mingzhe, LI Yilong, LING Ziyu, LYU Yuzhen, CHEN Kepi. Research Progress of Non-noble Metal-based Oxygen Evolution Catalyst for Proton Exchange Membrane Water Electrolysis. Materials Reports, 2024, 38(13): 23020032-16.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020032  或          http://www.mater-rep.com/CN/Y2024/V38/I13/23020032
1 Buxton G. Alternative energy technologies: an introduction with computer simulations, Boca Raton, CRC, 2015.
2 Ren X S, Dong L C, Xu D, et al. International Journal of Hydrogen Energy, 2020, 45(59), 34326.
3 Moriarty P, Honnery D. International Journal of Hydrogen Energy, 2007, 32(12), 1616.
4 Wei C, Rao R R, Peng J Y, et al. Advanced Materials, 2019, 31(31), 1806296.
5 Jiao Y, Zheng Y, Jaroniec M, et al. Chemical Society Reviews, 2015, 44(8), 2060.
6 Seh Z W, Kibsgaard J, Dickens C F, et al. Science, 2017, 355(6321), eaad4998.
7 Xu Z J. Science China Materials, 2020, 63(1), 3.
8 Oliveira A M, Beswick R R, Yan Y. Current Opinion in Chemical Engineering, 2021, 33, 100701. .
9 Ayers K, Danilovic N, Ouimet R, et al. Annual Review of Chemical and Biomolecular Engineering, 2019, 10(1), 219.
10 Germscheidt R L, Moreira D E B, Yoshimura R G, et al. Advanced Energy & Sustainability Research, 2021, 2(10), 2100093.
11 Santos D M F, Sequeira C A C, Figueiredo J L. Quimica Nova, 2013, 36(8), 1176.
12 Mi W L, Rong J F. Petroleum Processing and Petrochemicals, 2021, 52(10), 78 (in Chinese).
米万良, 荣峻峰. 石油炼制与化工, 2021, 52(10), 78.
13 Liu Z X, Qiu Z M, Luo Y, et al. International Journal of Hydrogen Energy, 2010, 35(7), 2762.
14 Antolini E. ACS Catalysis, 2014, 4(5), 1426.
15 Ayers K, Danilovic N, Harrison K, et al. Electrochemical Society Interface, 2021, 30(4), 67.
16 Fuel Cells and Hydrogen Joint Undertaking. Hydrogen roadmap Europe: a sustainable pathway for the European energy rransition, 2019.
17 Guo X Y, Li X M, Xu Z, et al. Energy Storage Science and Technology, 2020, 9(3), 688 (in Chinese).
郭秀盈, 李先明, 许壮, 等. 储能科学与技术, 2020, 9(3), 688.
18 IEA. The future of hydrogen. Paris: IEA, 2019.
19 Ouimet R J, Glenn J R, De Porcellinis D, et al. ACS Catalysis, 2022, 12(10), 6159.
20 Li L G, Wang P T, Shao Q, et al. Advanced Materials, 2021, 33(50), 2004243.
21 Suen N T, Hung S F, Quan Q, et al. Chemical Society Reviews, 2017, 46(2), 337.
22 Zafar M, Iqbal T, Fatima S, et al. Chemical Papers, 2022, 76(2), 609.
23 Mccrory C C, Jung S, Peters J C, et al. Journal of the American Chemical Society, 2013, 135(45), 16977.
24 Shi Q R, Zhu C Z, Du D, et al. Chemical Society Reviews, 2019, 48(12), 3181.
25 Miles M H, Thomason M A. Journal of the Electrochemical Society, 1976, 123(10), 1459.
26 Gao J J, Tao H B, Liu B. Advanced Materials, 2021, 33(31), 2003786.
27 Shan J Q, Zheng Y, Shi B Y, et al. ACS Energy Letters, 2019, 4(11), 2719.
28 Matsumoto Y, Sato E. Materials Chemistry and Physics, 1986, 14(5), 397.
29 Wu Y J, Yang J, Tu T X, et al. Angewandte Chemie, International Edition, 2021, 60(51), 26829.
30 Reier T, Nong H N, Teschner D, et al. Advanced Energy Materials, 2017, 7(1), 1601275.
31 An L, Wei C, Lu M, et al. Advanced Materials, 2021, 33(20), 2006328.
32 Chung D Y, Park S, Lopes P P, et al. ACS Catalysis, 2020, 10(9), 4990.
33 Bockris J O M, Otagawa T. Journal of Physical Chemistry, 1983, 87(15), 2960.
34 Tao H B, Zhang J M, Chen J Z, et al. Journal of the American Chemical Society, 2019, 141(35), 13803.
35 Rossmeisl J, Logadottir A, Nørskov J K. Chemical Physics, 2005, 319(1), 178.
36 Montoya J H, Seitz L C, Chakthranont P, et al. Nature Materials, 2017, 16(1), 70.
37 Medford A J, Vojvodic A, Hummelshøj J S, et al. Journal of Catalysis, 2015, 328, 36.
38 Man I C, Su H Y, Calle-Vallejo F, et al. ChemCatChem, 2011, 3(7), 1159.
39 Song J J, Wei C, Huang Z F, et al. Chemical Society Reviews, 2020, 49(7), 2196.
40 Busch M, Halck N B, Kramm U I, et al. Nano Energy, 2016, 29, 126.
41 Halck N B, Petrykin V, Krtil P, et al. Physical Chemistry Chemical Physics, 2014, 16(27), 13682.
42 Grimaud A, Diaz-Morales O, Han B, et al. Nature Chemistry, 2017, 9(5), 457.
43 Stoerzinger K A, Diaz-Morales O, Kolb M, et al. ACS Energy Letters, 2017, 2(4), 876.
44 Grimaud A, Demortière A, Saubanère M, et al. Nature Energy, 2016, 2(1), 16189.
45 Yoo J S, Rong X, Liu Y, et al. ACS Catalysis, 2018, 8(5), 4628.
46 Reier T, Pawolek Z, Cherevko S, et al. Journal of the American Chemical Society, 2015, 137(40), 13031.
47 Rong X, Parolin J, Kolpak A M. ACS Catalysis, 2016, 6(2), 1153.
48 Li L G, Huang Y, Li Y G. EnergyChem, 2020, 2(1), 100024.
49 Dai L M. Current Opinion in Electrochemistry, 2017, 4(1), 18.
50 Chen S, Duan J, Jaroniec M, et al. Advanced Materials, 2014, 26(18), 2925.
51 Sun J, Lowe S E, Zhang L, et al. Angewandte Chemie, International Edition, 2018, 57(50), 16511.
52 Zhao X, Su H, Cheng W, et al. ACS Applied Materials & Interfaces, 2019, 11(38), 34854.
53 Lu S S, Zhou W, Shi Y M, et al. Chem, 2022, 8(5), 1415.
54 Kinoshita K. Carbon: electrochemical and physicochemical propertie. New York: Wiley, 1988.
55 Yi Y M, Tornow J, Willinger E, et al. ChemElectroChem, 2015, 2(12), 1929.
56 Takashima T, Hashimoto K, Nakamura R. Journal of the American Chemical Society, 2012, 134(3), 1519.
57 Huynh m, Bediako D K, Nocera D G. Journal of the American Chemical Society, 2014, 136(16), 6002.
58 Li A, Ooka H, Bonnet N, et al. Angewandte Chemie, International Edition, 2019, 58(15), 5054.
59 Su H Y, Gorlin Y, Man I C, et al. Physical Chemistry Chemical Physics, 2012, 14(40), 14010.
60 Frydendal R, Paoli E A, Chorkendorff I, et al. Advanced Energy Materials, 2015, 5(22), 1500991.
61 Zhou L, Shinde A, Montoya J H, et al. ACS Catalysis, 2018, 8(12), 10938.
62 Hayashi T, Bonnet-Mercier N, Yamaguchi A, et al. Royal Society Open Science, 2019, 6(5), 190122.
63 Pan S J, Li H, Liu D, et al. Nature Communications, 2022, 13(1), 2294.
64 Yang Y, Su X, Zhang L, et al. ChemCatChem, 2019, 11(6), 1689.
65 Huynh M, Shi C, Billinge S J, et al. Journal of the American Chemical Society, 2015, 137(47), 14887.
66 Patel P P, Datta M K, Velikokhatnyi O I, et al. Scientific Reports, 2016, 6(1), 28367.
67 Moreno-Hernandez I A, Macfarland C A, Read C G, et al. Energy & Environmental Science, 2017, 10(10), 2103.
68 Ghadge S D, Velikokhatnyi O I, Datta M K, et al. ACS Applied Energy Materials, 2020, 3(1), 541.
69 Zhao Z, Zhang B, Fan D, et al. Journal of Catalysis, 2022, 405, 265.
70 Wei J, Wang J, Wang X, et al. Electrochimica Acta, 2022, 432, 141221.
71 Blanchard N, Bizet V. Angewandte Chemie, International Edition, 2019, 58(21), 6814.
72 Chang C J, Zhu Y P, Wang J L, et al. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(37), 19079.
73 Bloor L G, Molina P I, Symes M D, et al. Journal of the American Chemical Society, 2014, 136(8), 3304.
74 Mondschein J S, Callejas J F, Read C G, et al. Chemistry of Materials, 2017, 29(3), 950.
75 Wang H Y, Hung S F, Chen H Y, et al. Journal of the American Chemical Society, 2016, 138(1), 36.
76 Yan K L, Chi J Q, Xie J Y, et al. Renewable Energy, 2018, 119, 54.
77 Chen J, Selloni A. The Journal of Physical Chemistry Letters, 2012, 3(19), 2808
78 Yang X L, Li H, Lu A Y, et al. Nano Energy, 2016, 25, 42.
79 Anantharaj S, Karthick K, Kundu S. Inorganic Chemistry, 2019, 58(13), 8570.
80 Huynh M, Ozel T, Liu C, et al. Chemical Science, 2017, 8(7), 4779.
81 Li A L, Kong S, Guo C X, et al. Nature Catalysis, 2022, 5(2), 109.
82 Huang J Z, Sheng H Y, Ross R D, et al. Nature Communications, 2021, 12(1), 3036.
83 Yu J, Garcés-Pineda F A, González-Cobos J, et al. Nature Communications, 2022, 13(1), 4341.
84 Fan R Y, Zhao H Y, Zhen Y N, et al. Fuel, 2023, 333, 126361.
85 Raja d S, Cheng P-Y, Cheng C-C, et al. Applied Catalysis, B: Environmental, 2022, 303, 120899.
86 Tran-Phu T, Chen H, Daiyan R, et al. ACS Applied Materials & Interfaces, 2022, 14(29), 33130.
87 Kwong W L, Lee C C, Shchukarev A, et al. Journal of Catalysis, 2018, 365, 29.
88 Kwong W L, Lee C C, Shchukarev A, et al. Chemical Communications, 2019, 55(34), 5017.
89 Zhao L L, Cao Q, Wang A L, et al. Nano Energy, 2018, 45, 118.
90 Bonke s A, Abel k L, Hoogeveen D A, et al. ChemPlusChem, 2018, 83(7), 704.
91 Lin J, Wang P, Wang H, et al. Advanced Science, 2019, 6(14), 1900246.
92 Konkena B, Junge Puring K, Sinev I, et al. Nature Communications, 2016, 7(1), 12269.
93 Wang L, Cao L L, Liu X K, et al. Journal of Physical Chemistry C, 2020, 124(5), 2756.
94 Hu Q, Li G D, Liu X F, et al. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(2), 461.
95 Wu J J, Liu M J, Chatterjee K, et al. Advanced Materials Interfaces, 2016, 3(9), 1500669.
96 Yang Y, Yao H Q, Yu Z H, et al. Journal of the American Chemical Society, 2019, 141(26), 10417.
97 Guo Y N, Tang J, Qian H Y, et al. Chemistry of Materials, 2017, 29(13), 5566.
98 Xiong Q, Zhang X, Wang H, et al. Chemical Communications, 2018, 54(31), 3859.
99 Parra-Puerto A, Ng K L, Fahy K, et al. ACS Catalysis, 2019, 9(12), 11515.
100 Liu Y, Yang F, Qin W, et al. Journal of Colloid and Interface Science, 2019, 534, 55.
101 Liu H, Peng X, Liu X, et al. ChemSusChem, 2019, 12(7), 1334.
102 Guan C, Wu H, Ren W, et al. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(19), 9009.
103 Xue Z H, Su H, Yu Q Y, et al. Advanced Energy Materials, 2017, 7(12), 1602355.
104 Cheng W R, Zhang H, Zhao X, et al. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(20), 9420.
105 Hu F, Zhu S, Chen S, et al. Advanced Materials, 2017, 29(32), 1606570.
106 Gumerova N I, Rompel A. Nature Reviews Chemistry, 2018, 2(2), 0112.
107 Stuckart M, Monakhov K Y. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(37), 17849.
108 Goberna-Ferrón S, Vigara L, Soriano-López J, et al. Inorganic Chemistry, 2012, 51(21), 11707.
109 Blasco-Ahicart M, Soriano-López J, Carbó J J, et al. Nature Chemistry, 2018, 10(1), 24.
110 Han X B, Wang D X, Gracia-Espino E, et al. Chinese Journal of Catalysis, 2020, 41(5), 853.
111 Mondschein J S, Kumar K, Holder C F, et al. Inorganic Chemistry, 2018, 57(10), 6010.
112 Kirshenbaum M J, Richter M H, Dasog M. ChemCatChem, 2019, 11(16), 3877.
113 Lei C J, Chen H Q, Cao J H, et al. Advanced Energy Materials, 2018, 8(26), 1870119.
114 Shen B, He Y, He Z, et al. Journal of Colloid and Interface Science, 2022, 605, 637.
115 Najafi L, Bellani S, Oropesa-Nuñez R, et al. ACS Nano, 2019, 13(3), 3162.
116 Han N N, Yang K R, Lu Z Y, et al. Nature Communications, 2018, 9(1), 924.
117 Jain A, Wang Z, Nørskov J K. ACS Energy Letters, 2019, 4(6), 1410.
118 Thorarinsdottir A E, Costentin C, Veroneau S S, et al. Chemistry of Materials, 2022, 34(2), 826.
119 Patel A M, Nørskov J K, Persson K A, et al. Physical Chemistry Che-mical Physics, 2019, 21(45), 25323.
120 Shinde A, Jones R J R, Guevarra D, et al. Electrocatalysis, 2015, 6(2), 229.
121 Seitz L C, Dickens C F, Nishio K, et al. Science, 2016, 353(6303), 1011.
122 Liang X, Shi L, Liu Y, et al. Angewandte Chemie, International Edition, 2019, 58(23), 7631.
123 Wu G, Zheng X S, Cui P X, et al. Nature Communications, 2019, 10(1), 4855.
124 Luo F, Hu H, Zhao X, et al. Nano Letters, 2020, 20(3), 2120.
125 Xu J Y, Li J J, Lian Z, et al. ACS Catalysis, 2021, 11(6), 3402.
126 Kim J, Shih P C, Tsao K C, et al. Journal of the American Chemical Society, 2017, 139(34), 12076.
127 Song H J, Yoon H, Ju B, et al. Advanced Energy Materials, 2021, 11(27), 2002428.
[1] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[2] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[3] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[4] 陈亚楠, 刘培涛, 祖延清, 韩逢博, 李晓东, 毕鹏飞, 冯爱玲. 基于N,P共掺杂碳纳米片的富S空位Co/Co9S8复合物作为双功能催化剂用于可充锌-空气电池[J]. 材料导报, 2024, 38(12): 23010013-5.
[5] 宋冬梅, 郑秋燕, 潘廷仙, 胡长刚, 同鑫, 田娟. ZIFs材料对Fe/N/C催化剂氧还原性能的影响[J]. 材料导报, 2024, 38(10): 22100278-7.
[6] 赵帅凯, 李亚如, 任永鹏, 王长记, 潘昆明, 王利萌, 吕贝贝, 夏梁彬, 陈雪敏. ZIF衍生材料在ORR、OER和HER领域的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010012-12.
[7] 王叶超, 肖遥, 胡芳馨, 杨鸿斌. 不锈钢催化电极在氧析出中的研究进展[J]. 材料导报, 2023, 37(20): 22040218-11.
[8] 陈伶俐, 石悦婷, 李红茹, 王新潮, 张胜涛, 高放. 杂环砌块构筑的有机分子对钢和铜的缓蚀性能研究进展[J]. 材料导报, 2023, 37(17): 22010137-15.
[9] 王思弘, 宋钫. 金属氧化物电催化析氧机理的研究进展[J]. 材料导报, 2022, 36(23): 21030163-13.
[10] 潘冶, 钟旭, 朱银安, 陆韬, 于金. 高熵合金FeCoNiCrP的制备和电催化析氧性能[J]. 材料导报, 2022, 36(14): 22020109-5.
[11] 王小炼, 杨茂, 刘永辉, 张渝彬, 冯威. 非贵金属催化剂催化硼氢化钠水解制氢的研究进展[J]. 材料导报, 2021, 35(Z1): 21-28.
[12] 彭伟良, 袁斌. 自支撑过渡族金属基电催化析氧材料在碱水电解中的理论基础、研究现状及发展趋势[J]. 材料导报, 2021, 35(9): 9174-9185.
[13] 张晓君, 马梁, 孙迎辉. 基于电催化析氧反应的硫化物催化剂研究进展[J]. 材料导报, 2021, 35(23): 23040-23049.
[14] 韩斌, 冯思琛, 徐俊, 李朋威. Fe掺杂NiCo-LDH的制备及OER催化性能[J]. 材料导报, 2021, 35(14): 14001-14006.
[15] 吴雷, 彭犇, 周军, 刘长波, 岳昌盛, 田玮, 宋永辉, 姜磊. 碳基非贵金属电催化剂研究进展[J]. 材料导报, 2020, 34(23): 23009-23019.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed