Abstract: Proton exchange membrane (PEM) water electrolysis for hydrogen production is an important technology for renewable energy storage and conversion. At present, extensive studies have been focused on the non-noble metal-based oxygen evolution reaction (OER) catalyst. A variety of catalysts have been explored, but it is still a challenge to remain catalytic activity and stability under the strong acidic condition of PEM water anode. Progress on OER catalyst of non-noble metal under acid medium is summarized in this work for PEM water electrolysis. Firstly, the performance index of OER catalyst for water electrolysis is proposed based on the working characteristics of PEM device. Secondly, the basic principle of OER catalysis is described. Thirdly, the research progress of non-noble metal OER catalysts, including carbon-based materials, transition metal oxides, transition metal sulfides, transition metal phosphates and polyoxometalates is systematically reviewed, and the improvement strategies for catalytic activity and stability are emphatically analyzed. Finally, the design of OER catalyst is prospected from two aspects of actual demand and material modification for PEM.
1 Buxton G. Alternative energy technologies: an introduction with computer simulations, Boca Raton, CRC, 2015. 2 Ren X S, Dong L C, Xu D, et al. International Journal of Hydrogen Energy, 2020, 45(59), 34326. 3 Moriarty P, Honnery D. International Journal of Hydrogen Energy, 2007, 32(12), 1616. 4 Wei C, Rao R R, Peng J Y, et al. Advanced Materials, 2019, 31(31), 1806296. 5 Jiao Y, Zheng Y, Jaroniec M, et al. Chemical Society Reviews, 2015, 44(8), 2060. 6 Seh Z W, Kibsgaard J, Dickens C F, et al. Science, 2017, 355(6321), eaad4998. 7 Xu Z J. Science China Materials, 2020, 63(1), 3. 8 Oliveira A M, Beswick R R, Yan Y. Current Opinion in Chemical Engineering, 2021, 33, 100701. . 9 Ayers K, Danilovic N, Ouimet R, et al. Annual Review of Chemical and Biomolecular Engineering, 2019, 10(1), 219. 10 Germscheidt R L, Moreira D E B, Yoshimura R G, et al. Advanced Energy & Sustainability Research, 2021, 2(10), 2100093. 11 Santos D M F, Sequeira C A C, Figueiredo J L. Quimica Nova, 2013, 36(8), 1176. 12 Mi W L, Rong J F. Petroleum Processing and Petrochemicals, 2021, 52(10), 78 (in Chinese). 米万良, 荣峻峰. 石油炼制与化工, 2021, 52(10), 78. 13 Liu Z X, Qiu Z M, Luo Y, et al. International Journal of Hydrogen Energy, 2010, 35(7), 2762. 14 Antolini E. ACS Catalysis, 2014, 4(5), 1426. 15 Ayers K, Danilovic N, Harrison K, et al. Electrochemical Society Interface, 2021, 30(4), 67. 16 Fuel Cells and Hydrogen Joint Undertaking. Hydrogen roadmap Europe: a sustainable pathway for the European energy rransition, 2019. 17 Guo X Y, Li X M, Xu Z, et al. Energy Storage Science and Technology, 2020, 9(3), 688 (in Chinese). 郭秀盈, 李先明, 许壮, 等. 储能科学与技术, 2020, 9(3), 688. 18 IEA. The future of hydrogen. Paris: IEA, 2019. 19 Ouimet R J, Glenn J R, De Porcellinis D, et al. ACS Catalysis, 2022, 12(10), 6159. 20 Li L G, Wang P T, Shao Q, et al. Advanced Materials, 2021, 33(50), 2004243. 21 Suen N T, Hung S F, Quan Q, et al. Chemical Society Reviews, 2017, 46(2), 337. 22 Zafar M, Iqbal T, Fatima S, et al. Chemical Papers, 2022, 76(2), 609. 23 Mccrory C C, Jung S, Peters J C, et al. Journal of the American Chemical Society, 2013, 135(45), 16977. 24 Shi Q R, Zhu C Z, Du D, et al. Chemical Society Reviews, 2019, 48(12), 3181. 25 Miles M H, Thomason M A. Journal of the Electrochemical Society, 1976, 123(10), 1459. 26 Gao J J, Tao H B, Liu B. Advanced Materials, 2021, 33(31), 2003786. 27 Shan J Q, Zheng Y, Shi B Y, et al. ACS Energy Letters, 2019, 4(11), 2719. 28 Matsumoto Y, Sato E. Materials Chemistry and Physics, 1986, 14(5), 397. 29 Wu Y J, Yang J, Tu T X, et al. Angewandte Chemie, International Edition, 2021, 60(51), 26829. 30 Reier T, Nong H N, Teschner D, et al. Advanced Energy Materials, 2017, 7(1), 1601275. 31 An L, Wei C, Lu M, et al. Advanced Materials, 2021, 33(20), 2006328. 32 Chung D Y, Park S, Lopes P P, et al. ACS Catalysis, 2020, 10(9), 4990. 33 Bockris J O M, Otagawa T. Journal of Physical Chemistry, 1983, 87(15), 2960. 34 Tao H B, Zhang J M, Chen J Z, et al. Journal of the American Chemical Society, 2019, 141(35), 13803. 35 Rossmeisl J, Logadottir A, Nørskov J K. Chemical Physics, 2005, 319(1), 178. 36 Montoya J H, Seitz L C, Chakthranont P, et al. Nature Materials, 2017, 16(1), 70. 37 Medford A J, Vojvodic A, Hummelshøj J S, et al. Journal of Catalysis, 2015, 328, 36. 38 Man I C, Su H Y, Calle-Vallejo F, et al. ChemCatChem, 2011, 3(7), 1159. 39 Song J J, Wei C, Huang Z F, et al. Chemical Society Reviews, 2020, 49(7), 2196. 40 Busch M, Halck N B, Kramm U I, et al. Nano Energy, 2016, 29, 126. 41 Halck N B, Petrykin V, Krtil P, et al. Physical Chemistry Chemical Physics, 2014, 16(27), 13682. 42 Grimaud A, Diaz-Morales O, Han B, et al. Nature Chemistry, 2017, 9(5), 457. 43 Stoerzinger K A, Diaz-Morales O, Kolb M, et al. ACS Energy Letters, 2017, 2(4), 876. 44 Grimaud A, Demortière A, Saubanère M, et al. Nature Energy, 2016, 2(1), 16189. 45 Yoo J S, Rong X, Liu Y, et al. ACS Catalysis, 2018, 8(5), 4628. 46 Reier T, Pawolek Z, Cherevko S, et al. Journal of the American Chemical Society, 2015, 137(40), 13031. 47 Rong X, Parolin J, Kolpak A M. ACS Catalysis, 2016, 6(2), 1153. 48 Li L G, Huang Y, Li Y G. EnergyChem, 2020, 2(1), 100024. 49 Dai L M. Current Opinion in Electrochemistry, 2017, 4(1), 18. 50 Chen S, Duan J, Jaroniec M, et al. Advanced Materials, 2014, 26(18), 2925. 51 Sun J, Lowe S E, Zhang L, et al. Angewandte Chemie, International Edition, 2018, 57(50), 16511. 52 Zhao X, Su H, Cheng W, et al. ACS Applied Materials & Interfaces, 2019, 11(38), 34854. 53 Lu S S, Zhou W, Shi Y M, et al. Chem, 2022, 8(5), 1415. 54 Kinoshita K. Carbon: electrochemical and physicochemical propertie. New York: Wiley, 1988. 55 Yi Y M, Tornow J, Willinger E, et al. ChemElectroChem, 2015, 2(12), 1929. 56 Takashima T, Hashimoto K, Nakamura R. Journal of the American Chemical Society, 2012, 134(3), 1519. 57 Huynh m, Bediako D K, Nocera D G. Journal of the American Chemical Society, 2014, 136(16), 6002. 58 Li A, Ooka H, Bonnet N, et al. Angewandte Chemie, International Edition, 2019, 58(15), 5054. 59 Su H Y, Gorlin Y, Man I C, et al. Physical Chemistry Chemical Physics, 2012, 14(40), 14010. 60 Frydendal R, Paoli E A, Chorkendorff I, et al. Advanced Energy Materials, 2015, 5(22), 1500991. 61 Zhou L, Shinde A, Montoya J H, et al. ACS Catalysis, 2018, 8(12), 10938. 62 Hayashi T, Bonnet-Mercier N, Yamaguchi A, et al. Royal Society Open Science, 2019, 6(5), 190122. 63 Pan S J, Li H, Liu D, et al. Nature Communications, 2022, 13(1), 2294. 64 Yang Y, Su X, Zhang L, et al. ChemCatChem, 2019, 11(6), 1689. 65 Huynh M, Shi C, Billinge S J, et al. Journal of the American Chemical Society, 2015, 137(47), 14887. 66 Patel P P, Datta M K, Velikokhatnyi O I, et al. Scientific Reports, 2016, 6(1), 28367. 67 Moreno-Hernandez I A, Macfarland C A, Read C G, et al. Energy & Environmental Science, 2017, 10(10), 2103. 68 Ghadge S D, Velikokhatnyi O I, Datta M K, et al. ACS Applied Energy Materials, 2020, 3(1), 541. 69 Zhao Z, Zhang B, Fan D, et al. Journal of Catalysis, 2022, 405, 265. 70 Wei J, Wang J, Wang X, et al. Electrochimica Acta, 2022, 432, 141221. 71 Blanchard N, Bizet V. Angewandte Chemie, International Edition, 2019, 58(21), 6814. 72 Chang C J, Zhu Y P, Wang J L, et al. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(37), 19079. 73 Bloor L G, Molina P I, Symes M D, et al. Journal of the American Chemical Society, 2014, 136(8), 3304. 74 Mondschein J S, Callejas J F, Read C G, et al. Chemistry of Materials, 2017, 29(3), 950. 75 Wang H Y, Hung S F, Chen H Y, et al. Journal of the American Chemical Society, 2016, 138(1), 36. 76 Yan K L, Chi J Q, Xie J Y, et al. Renewable Energy, 2018, 119, 54. 77 Chen J, Selloni A. The Journal of Physical Chemistry Letters, 2012, 3(19), 2808 78 Yang X L, Li H, Lu A Y, et al. Nano Energy, 2016, 25, 42. 79 Anantharaj S, Karthick K, Kundu S. Inorganic Chemistry, 2019, 58(13), 8570. 80 Huynh M, Ozel T, Liu C, et al. Chemical Science, 2017, 8(7), 4779. 81 Li A L, Kong S, Guo C X, et al. Nature Catalysis, 2022, 5(2), 109. 82 Huang J Z, Sheng H Y, Ross R D, et al. Nature Communications, 2021, 12(1), 3036. 83 Yu J, Garcés-Pineda F A, González-Cobos J, et al. Nature Communications, 2022, 13(1), 4341. 84 Fan R Y, Zhao H Y, Zhen Y N, et al. Fuel, 2023, 333, 126361. 85 Raja d S, Cheng P-Y, Cheng C-C, et al. Applied Catalysis, B: Environmental, 2022, 303, 120899. 86 Tran-Phu T, Chen H, Daiyan R, et al. ACS Applied Materials & Interfaces, 2022, 14(29), 33130. 87 Kwong W L, Lee C C, Shchukarev A, et al. Journal of Catalysis, 2018, 365, 29. 88 Kwong W L, Lee C C, Shchukarev A, et al. Chemical Communications, 2019, 55(34), 5017. 89 Zhao L L, Cao Q, Wang A L, et al. Nano Energy, 2018, 45, 118. 90 Bonke s A, Abel k L, Hoogeveen D A, et al. ChemPlusChem, 2018, 83(7), 704. 91 Lin J, Wang P, Wang H, et al. Advanced Science, 2019, 6(14), 1900246. 92 Konkena B, Junge Puring K, Sinev I, et al. Nature Communications, 2016, 7(1), 12269. 93 Wang L, Cao L L, Liu X K, et al. Journal of Physical Chemistry C, 2020, 124(5), 2756. 94 Hu Q, Li G D, Liu X F, et al. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(2), 461. 95 Wu J J, Liu M J, Chatterjee K, et al. Advanced Materials Interfaces, 2016, 3(9), 1500669. 96 Yang Y, Yao H Q, Yu Z H, et al. Journal of the American Chemical Society, 2019, 141(26), 10417. 97 Guo Y N, Tang J, Qian H Y, et al. Chemistry of Materials, 2017, 29(13), 5566. 98 Xiong Q, Zhang X, Wang H, et al. Chemical Communications, 2018, 54(31), 3859. 99 Parra-Puerto A, Ng K L, Fahy K, et al. ACS Catalysis, 2019, 9(12), 11515. 100 Liu Y, Yang F, Qin W, et al. Journal of Colloid and Interface Science, 2019, 534, 55. 101 Liu H, Peng X, Liu X, et al. ChemSusChem, 2019, 12(7), 1334. 102 Guan C, Wu H, Ren W, et al. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(19), 9009. 103 Xue Z H, Su H, Yu Q Y, et al. Advanced Energy Materials, 2017, 7(12), 1602355. 104 Cheng W R, Zhang H, Zhao X, et al. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(20), 9420. 105 Hu F, Zhu S, Chen S, et al. Advanced Materials, 2017, 29(32), 1606570. 106 Gumerova N I, Rompel A. Nature Reviews Chemistry, 2018, 2(2), 0112. 107 Stuckart M, Monakhov K Y. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(37), 17849. 108 Goberna-Ferrón S, Vigara L, Soriano-López J, et al. Inorganic Chemistry, 2012, 51(21), 11707. 109 Blasco-Ahicart M, Soriano-López J, Carbó J J, et al. Nature Chemistry, 2018, 10(1), 24. 110 Han X B, Wang D X, Gracia-Espino E, et al. Chinese Journal of Catalysis, 2020, 41(5), 853. 111 Mondschein J S, Kumar K, Holder C F, et al. Inorganic Chemistry, 2018, 57(10), 6010. 112 Kirshenbaum M J, Richter M H, Dasog M. ChemCatChem, 2019, 11(16), 3877. 113 Lei C J, Chen H Q, Cao J H, et al. Advanced Energy Materials, 2018, 8(26), 1870119. 114 Shen B, He Y, He Z, et al. Journal of Colloid and Interface Science, 2022, 605, 637. 115 Najafi L, Bellani S, Oropesa-Nuñez R, et al. ACS Nano, 2019, 13(3), 3162. 116 Han N N, Yang K R, Lu Z Y, et al. Nature Communications, 2018, 9(1), 924. 117 Jain A, Wang Z, Nørskov J K. ACS Energy Letters, 2019, 4(6), 1410. 118 Thorarinsdottir A E, Costentin C, Veroneau S S, et al. Chemistry of Materials, 2022, 34(2), 826. 119 Patel A M, Nørskov J K, Persson K A, et al. Physical Chemistry Che-mical Physics, 2019, 21(45), 25323. 120 Shinde A, Jones R J R, Guevarra D, et al. Electrocatalysis, 2015, 6(2), 229. 121 Seitz L C, Dickens C F, Nishio K, et al. Science, 2016, 353(6303), 1011. 122 Liang X, Shi L, Liu Y, et al. Angewandte Chemie, International Edition, 2019, 58(23), 7631. 123 Wu G, Zheng X S, Cui P X, et al. Nature Communications, 2019, 10(1), 4855. 124 Luo F, Hu H, Zhao X, et al. Nano Letters, 2020, 20(3), 2120. 125 Xu J Y, Li J J, Lian Z, et al. ACS Catalysis, 2021, 11(6), 3402. 126 Kim J, Shih P C, Tsao K C, et al. Journal of the American Chemical Society, 2017, 139(34), 12076. 127 Song H J, Yoon H, Ju B, et al. Advanced Energy Materials, 2021, 11(27), 2002428.