Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 22120095-8    https://doi.org/10.11896/cldb.22120095
  金属与金属基复合材料 |
生物基MOFs衍生Co9S8/N,O-C电催化剂的析氧性能
柴瑞瑞, 桑欣欣*, 欧世国, 李家豪, 王大伟*
江南大学化学与材料工程学院合成与生物胶体教育部重点实验室,江苏 无锡 214122
Oxygen Evolution Performance of Bio-based MOFs Derived Co9S8/N, O-C Electrocatalysts
CHAI Ruirui, SANG Xinxin*, OU Shiguo, LI Jiahao, WANG Dawei*
The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
下载:  全 文 ( PDF ) ( 25382KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高性能氧析出反应(OER)催化剂对提高电解水性能至关重要。金属-有机框架(MOFs)衍生的金属-碳(M-C)材料因具有比表面积高、组成和结构易于调变等优势而被广泛用作OER催化剂。本工作制备以没食子酸为连接配体的钴-没食子酸MOFs材料(Co-gallate),通过配体交换合成钴-没食子酸@三聚硫氰酸(Co-gallate@TTCA),经高温碳化得到Co9S8/N,O-C电催化剂。在OER催化性能测试中,与Co-gallate直接碳化得到的Co/O-C相比,在电流密度为10 mA·cm-2时,Co9S8/N,O-C材料的过电位仅为270 mV,塔菲尔斜率为71.5 mV·dec-1,OER性能显著提升,且所合成的Co9S8/N,O-C材料具有良好的催化稳定性。本工作以廉价易得的生物基MOFs为牺牲模板,采用配体交换在MOFs结构中引入含N、S杂原子,通过改变碳化产物的组成和结构,有效提升电催化剂的催化活性和动力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
柴瑞瑞
桑欣欣
欧世国
李家豪
王大伟
关键词:  没食子酸  金属-有机框架  Co9S8  析氧反应  电解水    
Abstract: It is crucial to develop efficent oxygen evolution reaction (OER) catalysts for improving the performance of water-splitting devices. Metal-organic frameworks (MOFs)-derived metal-carbon (M-C) materials are widely used as OER catalysts due to their high specific surface area, easy adjustment of composition and structure. In this work, cobalt-gallic acid MOFs (Co-gallate) were assembled from gallic acid as the organic linkers. Via ligands exchange of thiocyanuric acid (TTCA), Co-gallate@TTCA was prepared. After carbonization of Co-gallate@TTCA, Co9S8/N, O-C electrocatalyst was obtained and the OER catalytic performance was evaluated. Compared with Co/O-C prepared by direct carbonization of Co-gallate, the overpotential of Co9S8/N, O-C material was only 270 mV with a Tafel slope of 71.5 mV·dec-1 at a current density of 10 mA·cm-2, and the OER performance was significantly improved. Moreover, the synthesized Co9S8/N, O-C material exhibits long-term catalytic stability. In this work, a readily available bio-based MOF was used as a sacrificial template, and N and S-containing ligands were introduced into the MOFs structure through ligand exchange. By changing the composition and structure of the carbonized products, the catalytic activity and kinetic performance of the catalysts are effectively improved.
Key words:  gallic acid    metal-organic frameworks    Co9S8    oxygen evolution reaction    water splitting
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TQ426  
基金资助: 国家自然科学基金(21803025)
通讯作者:  *桑欣欣,通信作者,江南大学化学与材料工程学院副教授、硕士研究生导师。2010年济南大学应用化学专业本科毕业,2016年中国科学院化学研究所材料学专业博士毕业后到江南大学工作至今。目前主要从事金属-有机框架材料、非均相催化反应等方面的研究工作。发表论文20余篇,包括Nature Communications、Green Chemistry、ACS Sustainable Chemistry & Engineering等。
王大伟,通信作者,江南大学化学与材料工程学院教授、博士研究生导师,上海市化学化工学会副秘书长。2009年于中国科学院大连化学物理研究所获得博士学位,后加入美国西弗吉尼亚大学(West Virginia University)从事博士后研究。2012年6月进入江南大学工作,目前主要从事多氮配体的设计合成及在借氢催化反应中的应用方面的研究工作。在Journal of the American Chemical Society、Green Chemistry、Chemical Engineering Journal等发表80余篇SCI论文。sangxx@jiangnan.edu.cn;wangdw@jiangnan.edu.cn   
作者简介:  柴瑞瑞,2020年6月毕业于山东农业大学,获得理学学士学位。现为江南大学化学与材料工程学院硕士研究生,主要研究领域为金属-有机框架衍生碳材料的制备及应用。
引用本文:    
柴瑞瑞, 桑欣欣, 欧世国, 李家豪, 王大伟. 生物基MOFs衍生Co9S8/N,O-C电催化剂的析氧性能[J]. 材料导报, 2024, 38(19): 22120095-8.
CHAI Ruirui, SANG Xinxin, OU Shiguo, LI Jiahao, WANG Dawei. Oxygen Evolution Performance of Bio-based MOFs Derived Co9S8/N, O-C Electrocatalysts. Materials Reports, 2024, 38(19): 22120095-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120095  或          http://www.mater-rep.com/CN/Y2024/V38/I19/22120095
1 Li W, Wang D, Zhang Y, et al. Advanced Materials, 2020, 32(19), 1907879.
2 Selvadurai A P B, Xiong T, Huang P, et al. Journal of Materials Chemistry A, 2021, 9(31), 16906.
3 Abe J O, Popoola A P I, Ajenifuja E, et al. International Journal of Hydrogen Energy, 2019, 44(29), 15072.
4 Zhang C, Xu W, Li S, et al. Chemical Engineering Journal, 2023, 454, 140291.
5 Sanati S, Morsali A, García H. Energy & Environmental Science, 2022, 15(8), 3119.
6 Chen Z, Duan X, Wei W, et al. Nano Energy, 2020, 78, 105270.
7 Ge R, Li L, Su J, et al. Advanced Energy Materials, 2019, 9(35), 1901313.
8 Lee Y, Suntivich J, May K J, et al. The Journal of Physical Chemistry Letters, 2012, 3(3), 399.
9 Yamada I, Takamatsu A, Asai K, et al. ACS Applied Energy Materials, 2018, 1(8), 3711.
10 Guo Y, Huang Q, Ding J, et al. International Journal of Hydrogen Energy, 2021, 46(43), 22268.
11 Wang Y, Kong B, Zhao D, et al. Nano Today, 2017, 15, 26.
12 Zhang X, Ma L, Sun Y. Materials Reports, 2021, 35(23), 23040 (in Chinese).
张晓君, 马梁, 孙迎辉. 材料导报, 2021, 35(23), 23040.
13 Ji Q, Kong Y, Tan H, et al. ACS Catalysis, 2022, 12(8), 4318.
14 Guo M, Xu K, Qu Y, et al. Electrochimica Acta, 2018, 268, 10.
15 Wang H, Holt C M B, Li Z, et al. Nano Research, 2012, 5(9), 605.
16 Wang T, Cao X, Jiao L, Small, 2021, 17(22), 2004398.
17 Shi Q, Fu S, Zhu C, et al. Materials Horizons, 2019, 6(4), 684.
18 Zhu J, Chen F, Zhang Z, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(15), 12955.
19 Wang Y, Jin W, Xuan C, et al. Journal of Power Sources, 2021, 512, 230430.
20 Li Y W, Zhang W J, Li J, et al. ACS Applied Materials & Interfaces, 2020, 12(40), 44710.
21 Cai P, Huang J, Chen J, et al. Angewandte Chemie International Edition, 2017, 56(17), 4858.
22 Wu B, Meng H, Morales D M, et al. Advanced Functional Materials, 2022, 32(31), 2204137.
23 Zhang Y, Xue Z, Zhao X, et al. Green Chemistry, 2022, 24(4), 1721.
24 Wang M, Cao L, Du X, et al. ACS Applied Materials & Interfaces, 2022, 14(22), 25427.
25 Zou H, Li G, Duan L, et al. Applied Catalysis B: Environmental, 2019, 259, 118100.
26 Gao X, Xu Z, Li G. Chemical Engineering Journal, 2022, 431, 133385.
27 Li Y W, Wu Q, Ma R C, et al. RSC Advances, 2021, 11(11), 5947.
28 Ning H, Li G, Chen Y, et al. ACS Applied Materials & Interfaces, 2019, 11(2), 1957.
29 Voiry D, Chhowalla M, Gogotsi Y, et al. ACS Nano, 2018, 12(10), 9635.
30 Zhang K, Zou R, Small, 2021, 17(37), 2100129.
31 Wang J, Kong H, Zhang J, et al. Progress in Materials Science, 2021, 116, 100717.
32 Zhang Y C, Han C, Gao J, et al. ACS Catalysis, 2021, 11(20), 12485.
33 Huang S, Meng Y, He S, et al. Advanced Functional Materials, 2017, 27 (17), 1606585.
34 Zhu H, Zhang J, Yanzhang R, et al. Advanced Materials, 2015, 27 (32), 4752.
35 Lyu D, Yao S, Ali A, et al. Advanced Energy Materials, 2021, 11 (28), 2101249.
36 Wu L L, Wang Q S, Li J, et al. Small, 2018, 14 (20), 1704035.
37 Zhang Z, Tang S, Lin X, et al. Applied Surface Science, 2022, 584, 152546.
38 Wang T, Li C, Liao X, et al. International Journal of Hydrogen Energy, 2022, 47 (49), 21182.
39 Feng X, Jiao Q, Dai Z, et al. Journal of Materials Chemistry A, 2021, 9 (20), 12244.
[1] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[2] 赵涔凯, 邹杰鑫, 王旻, 李思明, 赵微, 张时林, 滕珏瑾, 王艳皎, 吴明铂, 胡涵, 李亚伟. 基于阴离子交换膜电解水的离聚物研究进展[J]. 材料导报, 2024, 38(8): 23080132-11.
[3] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[4] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[5] 邓开鑫, 刘澄虎, 于志庆, 黄文斌, 魏强, 周亚松. 碳化钼的结构、制备及应用研究进展[J]. 材料导报, 2024, 38(5): 22080058-18.
[6] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[7] 刘向阳, 王议, 夏爽, 刘中清. 镍铁双氢氧化物的响应曲面法优化生长和电催化析氧性能研究[J]. 材料导报, 2024, 38(16): 23040152-5.
[8] 狄大程, 李明哲, 李羿龙, 凌子昱, 吕玉珍, 陈克丕. 质子交换膜电解水用非贵金属基析氧反应催化剂的研究进展[J]. 材料导报, 2024, 38(13): 23020032-16.
[9] 陈亚楠, 刘培涛, 祖延清, 韩逢博, 李晓东, 毕鹏飞, 冯爱玲. 基于N,P共掺杂碳纳米片的富S空位Co/Co9S8复合物作为双功能催化剂用于可充锌-空气电池[J]. 材料导报, 2024, 38(12): 23010013-5.
[10] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[11] 赵帅凯, 李亚如, 任永鹏, 王长记, 潘昆明, 王利萌, 吕贝贝, 夏梁彬, 陈雪敏. ZIF衍生材料在ORR、OER和HER领域的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010012-12.
[12] 王叶超, 肖遥, 胡芳馨, 杨鸿斌. 不锈钢催化电极在氧析出中的研究进展[J]. 材料导报, 2023, 37(20): 22040218-11.
[13] 王思弘, 宋钫. 金属氧化物电催化析氧机理的研究进展[J]. 材料导报, 2022, 36(23): 21030163-13.
[14] 丁琳, 王鹏翔, 刘浩, 熊谟鹏, 王慧凌. 功能化金属-有机框架材料吸附去除废水中铅离子的研究进展[J]. 材料导报, 2022, 36(20): 22070013-11.
[15] 初红涛, 尹杰, 林清, 隋秉蓉, 谭金铭, 苏立强, 马文辉. 镧系金属-有机框架材料作为荧光探针的研究进展[J]. 材料导报, 2022, 36(16): 20060292-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed