Oxygen Evolution Performance of Bio-based MOFs Derived Co9S8/N, O-C Electrocatalysts
CHAI Ruirui, SANG Xinxin*, OU Shiguo, LI Jiahao, WANG Dawei*
The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
Abstract: It is crucial to develop efficent oxygen evolution reaction (OER) catalysts for improving the performance of water-splitting devices. Metal-organic frameworks (MOFs)-derived metal-carbon (M-C) materials are widely used as OER catalysts due to their high specific surface area, easy adjustment of composition and structure. In this work, cobalt-gallic acid MOFs (Co-gallate) were assembled from gallic acid as the organic linkers. Via ligands exchange of thiocyanuric acid (TTCA), Co-gallate@TTCA was prepared. After carbonization of Co-gallate@TTCA, Co9S8/N, O-C electrocatalyst was obtained and the OER catalytic performance was evaluated. Compared with Co/O-C prepared by direct carbonization of Co-gallate, the overpotential of Co9S8/N, O-C material was only 270 mV with a Tafel slope of 71.5 mV·dec-1 at a current density of 10 mA·cm-2, and the OER performance was significantly improved. Moreover, the synthesized Co9S8/N, O-C material exhibits long-term catalytic stability. In this work, a readily available bio-based MOF was used as a sacrificial template, and N and S-containing ligands were introduced into the MOFs structure through ligand exchange. By changing the composition and structure of the carbonized products, the catalytic activity and kinetic performance of the catalysts are effectively improved.
通讯作者: *桑欣欣,通信作者,江南大学化学与材料工程学院副教授、硕士研究生导师。2010年济南大学应用化学专业本科毕业,2016年中国科学院化学研究所材料学专业博士毕业后到江南大学工作至今。目前主要从事金属-有机框架材料、非均相催化反应等方面的研究工作。发表论文20余篇,包括Nature Communications、Green Chemistry、ACS Sustainable Chemistry & Engineering等。 王大伟,通信作者,江南大学化学与材料工程学院教授、博士研究生导师,上海市化学化工学会副秘书长。2009年于中国科学院大连化学物理研究所获得博士学位,后加入美国西弗吉尼亚大学(West Virginia University)从事博士后研究。2012年6月进入江南大学工作,目前主要从事多氮配体的设计合成及在借氢催化反应中的应用方面的研究工作。在Journal of the American Chemical Society、Green Chemistry、Chemical Engineering Journal等发表80余篇SCI论文。sangxx@jiangnan.edu.cn;wangdw@jiangnan.edu.cn
1 Li W, Wang D, Zhang Y, et al. Advanced Materials, 2020, 32(19), 1907879. 2 Selvadurai A P B, Xiong T, Huang P, et al. Journal of Materials Chemistry A, 2021, 9(31), 16906. 3 Abe J O, Popoola A P I, Ajenifuja E, et al. International Journal of Hydrogen Energy, 2019, 44(29), 15072. 4 Zhang C, Xu W, Li S, et al. Chemical Engineering Journal, 2023, 454, 140291. 5 Sanati S, Morsali A, García H. Energy & Environmental Science, 2022, 15(8), 3119. 6 Chen Z, Duan X, Wei W, et al. Nano Energy, 2020, 78, 105270. 7 Ge R, Li L, Su J, et al. Advanced Energy Materials, 2019, 9(35), 1901313. 8 Lee Y, Suntivich J, May K J, et al. The Journal of Physical Chemistry Letters, 2012, 3(3), 399. 9 Yamada I, Takamatsu A, Asai K, et al. ACS Applied Energy Materials, 2018, 1(8), 3711. 10 Guo Y, Huang Q, Ding J, et al. International Journal of Hydrogen Energy, 2021, 46(43), 22268. 11 Wang Y, Kong B, Zhao D, et al. Nano Today, 2017, 15, 26. 12 Zhang X, Ma L, Sun Y. Materials Reports, 2021, 35(23), 23040 (in Chinese). 张晓君, 马梁, 孙迎辉. 材料导报, 2021, 35(23), 23040. 13 Ji Q, Kong Y, Tan H, et al. ACS Catalysis, 2022, 12(8), 4318. 14 Guo M, Xu K, Qu Y, et al. Electrochimica Acta, 2018, 268, 10. 15 Wang H, Holt C M B, Li Z, et al. Nano Research, 2012, 5(9), 605. 16 Wang T, Cao X, Jiao L, Small, 2021, 17(22), 2004398. 17 Shi Q, Fu S, Zhu C, et al. Materials Horizons, 2019, 6(4), 684. 18 Zhu J, Chen F, Zhang Z, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(15), 12955. 19 Wang Y, Jin W, Xuan C, et al. Journal of Power Sources, 2021, 512, 230430. 20 Li Y W, Zhang W J, Li J, et al. ACS Applied Materials & Interfaces, 2020, 12(40), 44710. 21 Cai P, Huang J, Chen J, et al. Angewandte Chemie International Edition, 2017, 56(17), 4858. 22 Wu B, Meng H, Morales D M, et al. Advanced Functional Materials, 2022, 32(31), 2204137. 23 Zhang Y, Xue Z, Zhao X, et al. Green Chemistry, 2022, 24(4), 1721. 24 Wang M, Cao L, Du X, et al. ACS Applied Materials & Interfaces, 2022, 14(22), 25427. 25 Zou H, Li G, Duan L, et al. Applied Catalysis B: Environmental, 2019, 259, 118100. 26 Gao X, Xu Z, Li G. Chemical Engineering Journal, 2022, 431, 133385. 27 Li Y W, Wu Q, Ma R C, et al. RSC Advances, 2021, 11(11), 5947. 28 Ning H, Li G, Chen Y, et al. ACS Applied Materials & Interfaces, 2019, 11(2), 1957. 29 Voiry D, Chhowalla M, Gogotsi Y, et al. ACS Nano, 2018, 12(10), 9635. 30 Zhang K, Zou R, Small, 2021, 17(37), 2100129. 31 Wang J, Kong H, Zhang J, et al. Progress in Materials Science, 2021, 116, 100717. 32 Zhang Y C, Han C, Gao J, et al. ACS Catalysis, 2021, 11(20), 12485. 33 Huang S, Meng Y, He S, et al. Advanced Functional Materials, 2017, 27 (17), 1606585. 34 Zhu H, Zhang J, Yanzhang R, et al. Advanced Materials, 2015, 27 (32), 4752. 35 Lyu D, Yao S, Ali A, et al. Advanced Energy Materials, 2021, 11 (28), 2101249. 36 Wu L L, Wang Q S, Li J, et al. Small, 2018, 14 (20), 1704035. 37 Zhang Z, Tang S, Lin X, et al. Applied Surface Science, 2022, 584, 152546. 38 Wang T, Li C, Liao X, et al. International Journal of Hydrogen Energy, 2022, 47 (49), 21182. 39 Feng X, Jiao Q, Dai Z, et al. Journal of Materials Chemistry A, 2021, 9 (20), 12244.