Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24020121-9    https://doi.org/10.11896/cldb.24020121
  金属与金属基复合材料 |
MOFs衍生钴/碳复合材料的制备及吸波性能研究
马茜1, 强荣1,*, 邵玉龙2, 杨啸1, 薛瑞1, 任方杰1, 吴旭1
1 中原工学院智能纺织与织物电子学院,郑州 450007
2 黄河科技学院工学部,郑州 450061
Preparation and Absorption Properties of Co/C Composites Derived from MOFs
MA Qian1, QIANG Rong1,*, SHAO Yulong2, YANG Xiao1, XUE Rui1, REN Fangjie1, WU Xu1
1 College of Intelligent Textile and Fabric Electronics, Zhongyuan University of Technology, Zhengzhou 450007, China
2 Faculty of Engineering, Huanghe University of Science and Technology, Zhengzhou 450061, China
下载:  全 文 ( PDF ) ( 32399KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前,电磁污染问题十分突出,设计高性能微波吸收材料具有重要意义。基于介电损耗、磁损耗以及异质结构中多组分的协同作用,开发具有强吸收和多重散射的微波吸收材料是一种很有前途的策略。本工作通过简单的方法合成了多面体MOFs,再经高温碳热还原得到Co/C复合材料。结果表明:随着煅烧温度的升高,Co/C复合材料中碳组分的石墨化程度增大,介电损耗能力增强;Co纳米粒子的结晶度增大,材料的饱和磁化强度增强,铁磁特性明显。磁-介双损耗机制有助于改善阻抗匹配,增强损耗特性。800 ℃氩气条件下获得的Co/C复合材料在吸收厚度为5.0 mm、4.8 GHz处的最小RL达到-46.4 dB,并且在厚度为2.0 mm时的微波吸收带宽为5.6 GHz。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马茜
强荣
邵玉龙
杨啸
薛瑞
任方杰
吴旭
关键词:  钴/碳复合材料  电磁波  介电损耗  磁损耗  界面极化    
Abstract: At present, the problem of electromagnetic pollution is very prominent, and it is of great significance to design high-performance microwave absorption materials. Based on the synergistic effect of dielectric loss, magnetic loss and multi-component in heterogeneous structure, it is a promising strategy to develop microwave absorption materials with strong absorption and multiple scattering. In this work, polyhedral metal organic frameworks (MOFs) were synthesized by a simple method, and Co/C composites were obtained by carbothermal reduction at high tempe-rature. The results indicate that with the increase of calcination temperature, the degree of graphitization of carbon components in Co/C compo-sites is enhanced, and the dielectric loss ability is enhanced. The crystallinity of Co nanoparticles increases, the saturation magnetization of Co nanoparticles increases, and the ferromagnetic properties are obvious. The magnetic-dielectric dual loss mechanism helps to improve impedance matching and enhance loss characteristics. The Co/C composite obtained under the condition of 800 ℃ argon has a minimum reflection loss (RL) of -46.4 dB at the absorption thickness of 5.0 mm and 4.8 GHz, and a microwave absorption bandwidth (EAB) of 5.6 GHz at the thickness of 2.0 mm.
Key words:  Co/C composite    electromagnetic wave    dielectric loss    magnetic loss    interfacial polarization
发布日期:  2025-05-29
ZTFLH:  TB33  
基金资助: 国家自然科学基金青年基金(51902359);河南省重点研发与推广专项(242102231067); 纺织工业联合会科技指导性项目(2021044);校级自然科学面上项目(K2023MS009);校级青年硕导培育计划(2023)
通讯作者:  *强荣,博士,中原工学院智能纺织与织物电子学院副教授、硕士研究生导师。目前主要从事碳基复合吸波材料方面的研究。Casey2009@126.com   
作者简介:  马茜,中原工学院智能纺织与织物电子学院硕士研究生,在强荣教授的指导下进行研究。目前主要研究领域为碳基吸波材料的可控制备。
引用本文:    
马茜, 强荣, 邵玉龙, 杨啸, 薛瑞, 任方杰, 吴旭. MOFs衍生钴/碳复合材料的制备及吸波性能研究[J]. 材料导报, 2025, 39(11): 24020121-9.
MA Qian, QIANG Rong, SHAO Yulong, YANG Xiao, XUE Rui, REN Fangjie, WU Xu. Preparation and Absorption Properties of Co/C Composites Derived from MOFs. Materials Reports, 2025, 39(11): 24020121-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020121  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24020121
1 Zhao B, Du Y, Yan Z, et al. Advanced Functional Materials, 2023, 33, 2209924.
2 Zhong X, He M, Zhang C, et al. Advanced Functional Materials, 2024, 34, 2313544.
3 Ma Q, Qiang R, Shao Y, et al. Journal of Colloid and Interface Science, 2023, 651, 106.
4 Qiang R, Feng S, Chen Y, et al. Journal of Colloid and Interface Science, 2022, 606, 406.
5 Wu Q, Wang B, Fu Y, et al. Chemical Engineering Journal, 2021, 410, 128378.
6 Tong G, Yuan J, Wu W, et al. CrystEngComm, 2012, 14, 2071.
7 Shi X L, Cao M S, Yuan J, et al. Applied Physics Letters, 2009, 95, 163108.
8 Li J, Huang J, Qin Y, et al. Materials Science and Engineering B, 2007, 138, 199.
9 Wen S, Liu Y, Zhao X, et al. Powder Technology, 2014, 264, 128.
10 Chen N, Jiang J T, Yuan Y, et al. Journal of Magnetism and Magnetic Materials, 2017, 421, 368.
11 López G P, Silvetti S P, Urreta S E, et al. Journal of Alloys and Compounds, 2010, 505, 808.
12 Ni X, Zheng Z, Hu X, et al. Journal of Colloid and Interface Science, 2010, 341, 18.
13 Li X, Zhu L, Kasuga T, et al. Chemical Engineering Journal, 2022, 450, 137943.
14 Li W, Chen J, Gao P. Journal of Colloid and Interface Science, 2022, 606, 719.
15 Zhou L, Zhou P, Zhang Y, et al. Journal of Energy Chemistry, 2021, 55, 355.
16 Xu H, He Z, Wang Y, et al. Nano Research, 2024, 17, 1616.
17 Lu A H, Li W C, Salabas E L, et al. Chemistry of Materials, 2006, 18, 2086.
18 Liu J, Li W, Duan L, et al. Nano Letters, 2015, 15, 5137.
19 Liu W, Shao Q, Ji G, et al. Chemical Engineering Journal, 2017, 313, 734.
20 Zhi D, Li T, Qi Z, et al. Chemical Engineering Journal, 2022, 433, 134496.
21 Liu P, Li Y, Xu H, et al. ACS Nano, 2023, 18, 560.
22 Zhang K, Li X, Li Y, et al. Chemical Engineering Journal, 2022, 433, 134455.
23 Zhang C X, Li Y H, Li Y N, et al. Materials Reports, 2020, 34(10), 10076(in Chinese).
张春旋, 李艳辉, 李亚楠, 等. 材料导报, 2020, 34(10), 10076.
24 Gao J, Ma Z, Liu F, et al. Chemical Engineering Journal, 2022, 446, 137157.
25 Sultan S, Tiwari J N, Jang J H, et al. Advanced Energy Materials, 2018, 8, 1801002.
26 Dong S, Zhang W, Zhang X, et al. Chemical Engineering Journal, 2018, 354, 767.
27 Qiang R, Du Y, Zhao H, et al. Journal of Materials Chemistry A, 2015, 3, 13426.
28 Wagner W, Wiedenmann A, Petry W, et al. Journal of Materials Research, 1991, 6, 2305.
29 Qiang R, Du Y, Wang Y, et al. Carbon, 2016, 98, 599.
30 Zhang X, Liu Z, Deng B, et al. Chemical Engineering Journal, 2021, 419, 129547.
31 Qiang R, Du Y, Chen D, et al. Journal of Alloys and Compounds, 2016, 681, 384.
32 He Z, Sun R, Xu H, et al. Carbon, 2024, 219, 118853.
33 Lu Y Y, Yi J H, Zhou Y Y, et al. Journal of Materials Science:Materials in Electronics, 2023, 34, 1892.
34 Xie P, Liu Y, Feng M, et al. Advanced Composites and Hybrid Materials, 2021, 4, 173.
35 Xu S, Liao P, Zhu J, et al. ACS Applied Nano Materials, 2024, 7, 8671.
36 Yu W, Min Y, Fang J, et al. RSC Advances, 2022, 12, 29070.
37 Chen W, Zhao H, Xu B, et al. Journal of Alloys and Compounds, 2020, 829, 154519.
38 Zhou Y, Bai Z, Yang X, et al. Metallurgy and Materials, 2023, 30, 515.
39 Kong M, Jia Z, Wang B, et al. Sustainable Materials and Technologies, 2020, 26, e00219.
40 Shi S, Mou P, Wang D, et al. Journal of Materiomics, 2024, 10, 124.
[1] 程亚杰, 许子琛, 王强, 魏浩, 孙希平, 王林. 一步法制备三维杆状聚吡咯及其吸波性能研究[J]. 材料导报, 2025, 39(8): 24010018-6.
[2] 张昊, 黄宗玥, 张妍彬, 魏剑. (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵陶瓷的低温制备及吸波性能[J]. 材料导报, 2024, 38(3): 22050232-6.
[3] 段广宇, 李玥, 胡静文, 胡祖明, 于翔, 迟长龙. 耐高温聚间苯二甲酰间苯二胺介电复合材料的制备及性能[J]. 材料导报, 2022, 36(4): 20120097-6.
[4] 黄晓寒, 程华, 郑子云, 牛梓蓉, 张左群. 含铁氧体陶粒骨料电磁波损耗模型与性能研究[J]. 材料导报, 2021, 35(22): 22027-22032.
[5] 孔静, 高鸿, 李岩, 王向轲, 张静静, 何端鹏, 吴冰, 邢焰. 电磁屏蔽机理及轻质宽频吸波材料的研究进展[J]. 材料导报, 2020, 34(9): 9055-9063.
[6] 赵鹏飞, 耿浩然, 范浩军, 许伟建, 廖禄生, 彭政. 二硫化钼/碳纳米管/丁苯橡胶吸波材料的结构与性能[J]. 材料导报, 2020, 34(14): 14204-14208.
[7] 王储, 周珏辉, 周添, 陈亦伦, 宋荟荟. 大功率电磁波照射下超材料多物理场耦合行为[J]. 材料导报, 2019, 33(z1): 84-88.
[8] 操芳芳, 马立云, 曹欣, 王魏巍, 仲召进, 李金威, 高强. SiO2/B2O3质量比对低介电封接玻璃性能的影响[J]. 材料导报, 2019, 33(z1): 199-201.
[9] 李玉超, 付雪连, 战艳虎, 谢倩, 葛祥才, 陶绪泉, 廖成竹, 卢周广. 高介电常数、低介电损耗聚合物复合电介质材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 18-23.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed