Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24040229-7    https://doi.org/10.11896/cldb.24040229
  金属与金属基复合材料 |
Nb、W合金化对电弧熔覆MoSi2涂层高温抗氧化性的影响
王玉瑞, 孙洪飞, 孙顺平*, 王洪金, 赵凤玲, 张扬, 李小平
江苏理工学院材料工程学院,江苏 常州 213001
Effect of Nb and W Alloying by Arc Cladding on the High-temperature Oxidation Resistance of MoSi2 Coatings
WANG Yurui, SUN Hongfei, SUN Shunping*, WANG Hongjin, ZHAO Fengling, ZHANG Yang, LI Xiaoping
School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, Jiangsu, China
下载:  全 文 ( PDF ) ( 28083KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 MoSi2涂层因其良好的高温抗氧化性、抗热腐蚀性等优点,被认为是目前理想的高温防护材料之一,然而涂层与基体热膨胀系数不匹配、界面互扩散等问题会严重影响MoSi2涂层的抗氧化性能。本工作通过电弧熔覆技术在Mo基体上制备了不同配比的Nb、W合金化MoSi2涂层,研究了在高温氧化环境下Nb、W元素对MoSi2涂层的组织、形貌以及抗氧化性的影响。结果表明,添加2%Nb形成的C11b/C40型(Mo,Nb)Si2会增加涂层和氧化层中的缺陷,添加4%W能够提高涂层和氧化层的致密度,添加10%W对氧化层的致密性不利。根据氧化动力学曲线可知,添加4%W以及添加2%Nb+4%W的MoSi2涂层呈氧化增重趋势,在氧化过程中形成了较为致密的氧化膜。通过结合氧化动力学曲线计算抛物线速度常数值,发现MoSi2的氧化速率随着Nb、W含量的增加而提高。单一添加Nb元素对MoSi2氧化层厚度的影响很小,Nb、W协同合金化后氧化层的厚度提升显著。氧化激活能计算结果表明,添加 2%Nb+4%W的MoSi2涂层氧化激活能最高,约为纯MoSi2的2.4倍,高温抗氧化性最佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王玉瑞
孙洪飞
孙顺平
王洪金
赵凤玲
张扬
李小平
关键词:  MoSi2涂层  电弧熔覆  合金化  高温抗氧化性    
Abstract: MoSi2 coating is considered as one of the ideal high-temperature protective materials at present because of its good high-temperature oxidation resistance, thermal corrosion resistance, etc. However, the mismatch of thermal expansion coefficient between the coating and the substrate and interfacial interdiffusion problems seriously affect the antioxidant performance of MoSi2 coating. In this work, Nb- and W-alloyed MoSi2 coatings with different ratios were prepared on Mo substrate by arc cladding technology, and the effects of Nb and W elements on the organization, morphology, and oxidation resistance of MoSi2 coatings were investigated under high-temperature oxidizing environment. The results show that the C11b/C40-type (Mo, Nb)Si2 formed by the addition of 2%Nb increases the defects in the coating and the oxide layer, and the addition of 4%W improves the densities of the coating and the oxide layer, while the addition of 10%W adversely affects the densification of the oxide layer. According to the oxidation kinetic curves, the MoSi2 coatings with 4%W and with 2% Nb+4%W showed a trend of oxidative weight gain, and a denser oxide film was formed during the oxidation process. By correlating the oxidation kinetic curves to derive the parabolic velocity constants, it becomes evident that the oxidation rate of MoSi2 accelerates with increasing Nb and W content. The impact of adding a single element of Nb on the thickness of the MoSi2 oxide layer is minimal, whereas the synergistic alloying of Nb and W leads to a notable increase in oxide layer thickness. Oxidative activation energy calculations indicate that the MoSi2 coating with 2%Nb+4%W has the highest oxidation activation energy, which is about 2.4 times that of pure MoSi2, and has the best high-temperature antioxidant performance.
Key words:  MoSi2 coating    arc cladding    alloying    high temperature oxidation resistance
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TG148  
基金资助: 中国博士后科学基金(2019M650096);江苏省高等学校自然科学基金重大项目(21KJA430009);常州市科技支撑计划(社会发展)(CE20235041);江苏省自然科学基金(BK20241969)
通讯作者:  *孙顺平,博士,江苏理工学院教授、硕士生研究生导师。主要借助热力学模拟及第一性原理计算相结合的方法研究材料的合金化行为与微观缺陷特征。sunshunping@jsut.edu.cn   
作者简介:  王玉瑞,江苏理工学院硕士研究生。主要研究领域为金属与合金的微结构及性质,目前主要从事难熔金属硅化物涂层的改性研究。
引用本文:    
王玉瑞, 孙洪飞, 孙顺平, 王洪金, 赵凤玲, 张扬, 李小平. Nb、W合金化对电弧熔覆MoSi2涂层高温抗氧化性的影响[J]. 材料导报, 2025, 39(10): 24040229-7.
WANG Yurui, SUN Hongfei, SUN Shunping, WANG Hongjin, ZHAO Fengling, ZHANG Yang, LI Xiaoping. Effect of Nb and W Alloying by Arc Cladding on the High-temperature Oxidation Resistance of MoSi2 Coatings. Materials Reports, 2025, 39(10): 24040229-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040229  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24040229
1 Liu W, Huang S, Ye C T, et al. Journal of Materials Science & Technology, 2023, 149, 127.
2 Zhang X Z, Cui H, Hu Y, et al. Materials Reports, 2023, 37(6), 84 (in Chinese).
张曦挚, 崔红, 胡杨, 等. 材料导报, 2023, 37(6), 84.
3 Zhang Y Y, Fu T, Yu L H, et al. Ceramics International, 2022, 48(14), 20895.
4 Fu M J, Zhang Y, Zhang G F, et al. Materials Reports, 2023, 37(3), 177 (in Chinese).
符明君, 张勇, 张耿飞, 等. 材料导报, 2023, 37(3), 177.
5 Fu T, Zhang Y Y, Chen L Y, et al. Journal of Materials Research and Technology, 2024, 29, 491.
6 Huang J B, Zhang G H. Corrosion Science, 2023, 224, 111514.
7 Wang R Z, Li W G. Journal of Alloys and Compounds, 2015, 644, 582.
8 Yu X H, Li F J, Shi X W, et al. Surface and Coatings Technology, 2022, 442, 128016.
9 Zhu J Y, Su T, Lei S Y, et al. International Journal of Refractory Metals and Hard Materials, 2024, 121, 106632.
10 Chen Z, Shao W, Li M F, et al. Corrosion Science, 2023, 216, 111070.
11 Gorshkov A V, Miloserdov A P, Titov D D, et al. Inorganic Materials:Applied Research, 2019, 10(2), 473.
12 Meschter P J. Scripta Metallurgica et Materialia, 1991, 25(3), 521.
13 Dasgupta T, Umarji A. Intermetallics, 2008, 16(6), 739.
14 Lu S S, Zhou J S, Wang L Q, Liang J. Surface and Coatings Technology, 2021, 424, 127665.
15 Zhang Y L, Wang Q, Li Q, et al. Surface Technology, 2023, 52(10), 48 (in Chinese).
张亚龙, 王茜, 李倩, 等. 表面技术, 2023, 52(10), 48.
16 Xue B, Lei W N, Liu X, et al. Surface Technology, 2020, 49(9), 225 (in Chinese).
薛冰, 雷卫宁, 刘骁, 等. 表面技术, 2020, 49(9), 225.
17 Wang B, Sun S P, Wang H J, et al. Materials Reports, 2022, 36(13), 95 (in Chinese).
王斌, 孙顺平, 王洪金, 等. 材料导报, 2022, 36(13), 95.
18 Harada Y, Murata Y, Morinaga M. Intermetallics, 1998, 6(6), 529.
19 Hardy G F, Hulm J K. Physical Review, 1953, 89(4), 844.
20 Zenk C, Gibson J S K L, Kiener V M, et al. Acta Materialia, 2019, 181, 385.
21 Pu D L, Pan Y. Ceramics International, 2022, 48(8), 11518.
22 Fu T, Chen L Y, Zhang Y Y, et al. Ceramics International, 2023, 49(13), 21222.
23 Geng T, Li C, Zhao X, et al. Calphad, 2010, 34(3), 363.
24 Zhang L, Zhu O, Zhang F, et al. Scripta Materialia, 2007, 57(4), 305.
25 Peng K, Yi M Z, Ran L P, et al. The Chinese Journal of Nonferrous Metals, 2009, 19(10), 1802 (in Chinese).
彭可, 易茂中, 冉丽萍, 等. 中国有色金属学报, 2009, 19(10), 1802.
26 Bhattacharyya B K, Bylander D M, Kleinman L. Physical Review B, 1985, 32(12), 7973.
27 Tortorici P C, Adayananda M. Materials Science & Engineering A, 1999, 261(1-2), 64.
[1] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[2] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[3] 张业飞, 江海涛, 田世伟, 张思远, 李冲. TiAl基合金高温防护及热障涂层体系研究进展[J]. 材料导报, 2025, 39(4): 24020147-10.
[4] 陈琛, 陈昱林, 苏璇, 卢璟钰, 于俊杰, 张建, 吉卫喜. Al-Zn体系高压扭转过程中的相变机理[J]. 材料导报, 2024, 38(9): 22120148-6.
[5] 范航航, 刘飞, 郑亦玮, 白朴存, 崔晓明, 王海波, 靳亮. Li/Sc复合添加对铸态Al-Cu-Mg铝合金微观组织和硬度的影响规律[J]. 材料导报, 2024, 38(24): 23090211-7.
[6] 戴宇恒, 满廷慧, 李朋, 徐乐钱, 刘宇, 韦习成. 稀土合金化对高碳高合金工模具钢的影响[J]. 材料导报, 2024, 38(23): 23100036-8.
[7] 刘书俊, 肖文龙, 杨昌一, 吴舒凡. 激光粉末床熔融增材制造耐热铝合金的研究进展[J]. 材料导报, 2024, 38(18): 24080026-9.
[8] 刘柱, 孙玉崇, 侯忠霖, 徐振, 吕哲, 陈庆强. Zr含量对5083铝合金铸轧板组织和性能的影响[J]. 材料导报, 2024, 38(15): 23080148-6.
[9] 徐泽, 徐振, 吕哲, 宋华, 陈庆强. Y对6082铝合金铸轧板微观结构及性能的影响[J]. 材料导报, 2024, 38(15): 23080147-6.
[10] 卢超, 曹建春, 陈伟, 刘星, 张永青, 阴树标. 再加热温度对Nb微合金化钢筋连续冷却相变及组织与性能的影响[J]. 材料导报, 2023, 37(8): 21100016-8.
[11] 杨亚苹, 李艳辉, 张伟. 脱合金化法制备纳米多孔铂合金的研究进展[J]. 材料导报, 2023, 37(3): 21020061-7.
[12] 畅庚榕, 刘明霞, 孟瑜, 郭岩, 马大衍, 李世亮, 徐可为. H13钢表面同质激光熔覆中WC微合金化行为及摩擦学性能研究[J]. 材料导报, 2023, 37(22): 22030041-6.
[13] 常杜娟, 邓莉萍, 罗军明. 球磨工艺和合金元素Al对机械合金化制备NbVMoTa高熵合金粉末的影响[J]. 材料导报, 2023, 37(10): 21110231-5.
[14] 李多娇, 程春龙, 乐启炽, 陈亮, 闫家仕. 镁合金氧化机理研究进展[J]. 材料导报, 2023, 37(1): 20120108-9.
[15] 秦芳诚, 亓海全, 孟征兵, 陈平, 黄玉鸿. 海洋工程高抗蚀筋材研究进展[J]. 材料导报, 2022, 36(6): 20060137-7.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed