Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24040223-9    https://doi.org/10.11896/cldb.24040223
  高分子与聚合物基复合材料 |
混凝土裂缝修复用改性环氧树脂的多目标优化
陈自敏1, 冉志红1,*, 张艳1, 宋泽冈2, 袁博2
1 云南大学建筑与规划学院,昆明 650091
2 云南省公路科学技术研究院,昆明 650051
Multi-objective Optimisation of Modified Epoxy Resin for Concrete Crack Repair
CHEN Zimin1, RAN Zhihong1,*, ZHANG Yan1, SONG Zegang2, YUAN Bo2
1 Faculty of Architecture and Planning, Yunnan University, Kunming 650091, China
2 Yunnan Institute of Highway Science and Technology, Kunming 650051, China
下载:  全 文 ( PDF ) ( 22133KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土裂缝修复用环氧树脂的力学性能决定着修复效果,为提高环氧树脂的力学性能,对其进行复合改性。选取改性纳米TiO2、改性纳米SiO2、羧基丁腈橡胶(CTBN)掺量作为自变量,以环氧树脂的拉伸强度、断裂伸长率、抗压强度为响应值,建立了环氧树脂力学性能的单目标预测模型,并确定了每个单目标的最佳配比。此外,还分析了各个因素之间的交互作用对复合改性环氧树脂性能的影响。采用灰色关联度分析法进行多目标优化,得出复合改性环氧树脂的最佳配比:改性纳米TiO2用量为0.96%、改性纳米SiO2用量为2.85%、CTBN用量为17.63%。通过实验验证,与预测值相比,最大拉伸强度、断裂伸长率和抗压强度的偏差分别为1.8%、1.2%和2.7%,表明回归模型的预测效果较好,并且多目标优化后材料的综合性能与冲击韧性明显提高。本工作可为改性环氧树脂配比设计提供一定的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈自敏
冉志红
张艳
宋泽冈
袁博
关键词:  响应曲面法  灰色关联度分析法  改性环氧树  多目标优化    
Abstract: The mechanical properties of epoxy resin for concrete crack repair determine the repair effect, and composite modification of epoxy resin is carried out to improve its mechanical properties. A single-objective prediction model for the mechanical properties of epoxy resins was established by selecting modified nano TiO2, modified nano SiO2, and carboxytetrabutadiene nitrile rubber (CTBN) doping as independent variables, and the tensile strength, elongation at break, and compressive strength of epoxy resins as the response values, and the optimal ratios of each single-objective were determined. In addition, the effects of the interaction between various factors on the properties of composite modified epoxy resin were analyzed. Gray correlation analysis was used for multi-objective optimization, and the optimal ratios of the composite modified epoxy resin were obtained:the amount of modified nano-TiO2 was 0.96%, the amount of modified nano-SiO2 was 2.85%, and the amount of CTBN was 17.63%, and it was experimentally verified that, compared with the predicted values, the deviations of the maximum tensile strength, the elongation at break and the compressive strength were 1.8%, 1.2% and 2.7%, which indicates that the regression model has a better prediction effect, and the comprehensive performance and impact toughness of the material are significantly improved after multi-objective optimization. This work can provide some reference for the design of modified epoxy resin proportioning.
Key words:  response surface methodology    gray relational analysis    modified epoxy resin    multi-objective optimisation
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TQ332.5  
基金资助: 国家自然科学基金(51968074)
通讯作者:  *冉志红,博士,云南大学建筑与规划学院副教授、硕士研究生导师。主要从事桥梁结构施工监控与长期监测、桥梁工程损伤诊断与可靠度评估等方面的研究。ranzhihong@ynu.edu.cn   
作者简介:  陈自敏,云南大学建筑与规划学院硕士研究生,主要从事改性环氧树脂在混凝土裂缝修复方面的应用研究。
引用本文:    
陈自敏, 冉志红, 张艳, 宋泽冈, 袁博. 混凝土裂缝修复用改性环氧树脂的多目标优化[J]. 材料导报, 2025, 39(10): 24040223-9.
CHEN Zimin, RAN Zhihong, ZHANG Yan, SONG Zegang, YUAN Bo. Multi-objective Optimisation of Modified Epoxy Resin for Concrete Crack Repair. Materials Reports, 2025, 39(10): 24040223-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040223  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24040223
1 Lyu K, Feng Y J, Yin H Y. Materials Research and Application, 2025, 19(1), 136(in Chinese).
吕锟, 冯玉军, 殷鸿尧. 材料研究与应用, 2025, 19(1), 136.
2 Yuan Z H, Niu Y P, Wang X W, et al. Thermosetting Resin, 2019, 34(6), 65(in Chinese).
袁智慧, 牛永平, 汪小伟, 等. 热固性树脂, 2019, 34(6), 65.
3 Zeng Q W, Gao P W, Xu Y F, et al. Materials, 2021, 14(17), 4828.
4 Chen F, Wang S X, Zhai J M, et al. Composites Science and Engineering, 2020(12), 92(in Chinese).
陈锋, 王淑霞, 翟军明, 等. 复合材料科学与工程, 2020(12), 92.
5 Shen Y, Ai J, Chen X F, et al. Polymer Materials Science & Engineering, 2022, 38(1), 75(in Chinese).
沈莹, 艾洁, 陈晓芬, 等. 高分子材料科学与工程, 2022, 38(1), 75.
6 Yang G, Zheng B, Yang J P, et al. Journal of Polymer Science Part A:Polymer Chemistry, 2008, 46(2), 612.
7 Su J F, Li H L, Xia T, et al. Thermosetting Resin, 2023, 38, (5):61(in Chinese).
苏建锋, 李会录, 夏婷, 等. 热固性树脂, 2023, 38(5), 61.
8 Jung H S, Park Y, Nah C W, et al. Fibers and Polymers, 2021, 22 (1), 184.
9 Mahdi M K, Azam J A. Journal of Applied Polymer Science, 2019, 136 (4), 46988.
10 Chen Z X, Ruan Y B, Yang J. Thermosetting Resin, 2022, 37(1), 64(in Chinese).
陈子豪, 阮英波, 杨杰. 热固性树脂, 2022, 37(1), 64.
11 Dalseno L A, Saltarelli E G G, Camila V O D, et al. Iranian Polymer Journal, 2021, 30 (12), 1329.
12 He Y, Chen J W, Zhang W K, et al. Plastics Sicence and Technology, 2023, 51(2), 59(in Chinese).
何勇, 陈金威, 张卫康, 等. 塑料科技, 2023, 51(2), 59.
13 Box G E, Wilson K B. Journal of the Royal Statistical Society Series B (Methodological), 1951, 13 (1), 1.
14 Ba H Q, Guo L X, Huan H Y, et al. Polymers, 2023, 15 (8).
15 Deshmukh S S, Jadhav S V, Shrivastava R. Materials Today: Procee-dings, 2019, 18, 3856.
16 Qing G G, Ting X D, Song X C, et al. Advanced Materials Research, 2011, (415-417), 35.
17 Goyat M S, Rana S, Halder S, et al. Ultrasonics Sonochemistry, 2018, 40, 861.
18 Jie A, Wei C, Peng W, et al. Journal of Applied Polymer Science, 2020, 138(18), e50331.
19 Goyat M S, Hooda A, Gupta T K, et al. Ceramics International, 2021, 47(16), 22316.
20 Bian X, Tuo R, Yang W, et al. Polymers, 2019, 18(10), 1548.
21 Zhu G J, Li W X. Materials Reports, 2024, 38(10), 269 (in Chinese).
朱刚建, 李文晓. 材料导报, 2024, 38(10), 269.
22 Wang L, Tan Y, Wang H, et al. Chemical Physics Letters, 2018, 699, 14.
23 Lyu G J, Ji T. Journal of Building Materials, 2021, 24(5), 542(in Chinese).
吕官记, 季韬. 建筑材料学报, 2021, 24(5), 542.
24 Zewde B, Pitliya P, Karim A, Raghavan D. Macromolecular Materials and Engineering, 2016, 301(5), 542.
25 Balakrishnan S, Start P, Raghavan D, et al. Polymer, 2005, 46(25), 11255.
[1] 楚佳杰, 韩冰源, 李仁兴, 高祥涵, 丛孟启, 吴海东, 徐文文, 杜伟. 基于响应曲面法的等离子喷涂Ni60CuMo涂层质量优化[J]. 材料导报, 2024, 38(3): 22040338-6.
[2] 何丽红, 马悦帆, 杨克, 徐心硕, 李青林. 水性有机硅改性环氧树脂的制备与性能[J]. 材料导报, 2024, 38(3): 22050109-5.
[3] 刘向阳, 王议, 夏爽, 刘中清. 镍铁双氢氧化物的响应曲面法优化生长和电催化析氧性能研究[J]. 材料导报, 2024, 38(16): 23040152-5.
[4] 李嘉, 肖鹏, 范思源, 周壹伍. 基于表面能理论的粘结剂-UHPC粘结失效模式分析[J]. 材料导报, 2024, 38(14): 23030069-7.
[5] 周梅, 白金婷, 郭凌志, 张玉琢. 基于响应曲面法的煤矸石地聚物注浆材料配比优化[J]. 材料导报, 2023, 37(20): 22020068-9.
[6] 罗晓宇, 冯曰海, 赵鑫, 刘思余. 镁合金摆动多道增材层成形特征参数与尺寸控制规律研究[J]. 材料导报, 2023, 37(18): 22040093-7.
[7] 王静文, 王伟. 玄武岩纤维增强泡沫混凝土响应面多目标优化[J]. 材料导报, 2019, 33(24): 4092-4097.
[8] 张义福, 张华, 况菁, 朱政强, 潘际銮. 铜/铝极耳超声波焊接响应曲面优化分析[J]. 材料导报, 2019, 33(11): 1842-1847.
[9] 高保东, 钟红荣, 吴婷芳, 谭翠, 张岩, 徐水. 丝素/海藻酸钠膜韧性的优化及膜释药机理分析[J]. 《材料导报》期刊社, 2018, 32(7): 1197-1201.
[10] 梁存光,李新梅. 基于灰色关联分析与回归分析WC-12Co涂层工艺参数的多目标优化[J]. 《材料导报》期刊社, 2018, 32(10): 1752-1756.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed