Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24040205-9    https://doi.org/10.11896/cldb.24040205
  高分子与聚合物基复合材料 |
GO/PANI复合颗粒的制备及防腐应用研究进展
刘龙鑫1, 张玲2,3, 王瑞涛4, 孟腾飞5,6, 刘芳5,6, 谢强1, 张冬海3,*
1 中国矿业大学(北京)化学与环境工程学院,北京 100083
2 中国科学院大学化学工程学院,北京 100049
3 中国科学院过程工程研究所介科学与工程国家重点实验室,北京 100190
4 宁波市绿色石化碳减排技术与装备重点实验室,浙江 宁波 315201
5 山东奔腾漆业股份有限公司,山东 济宁 273500
6 邹城奔腾新材料涂层研究院,山东 济宁 273500
Research Progress on the Preparation of Graphene Oxide/Polyaniline Composite Particles and Their Anti-corrosion Application
LIU Longxin1, ZHANG Ling2,3, WANG Ruitao4, MENG Tengfei5,6, LIU Fang5,6, XIE Qiang1, ZHANG Donghai3,*
1 School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
2 School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 State Key Laboratory of Science and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
4 Ningbo Green Petrochemical Carbon Reduction Technology and Equipment Key Laboratory, Ningbo 315201, Zhejiang, China
5 Shandong Pentium Paint Industry Co., Ltd., Jining 273500, Shandong, China
6 Zoucheng Pentium New Material Coating Research Institute, Jining 273500, Shandong, China
下载:  全 文 ( PDF ) ( 26285KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属腐蚀给工业生产及安全防护带来了巨大挑战,而涂层防腐作为目前最重要的防腐措施之一,研究如何更为有效地提高涂料防腐性能具有重要意义。GO/PANI复合颗粒作为一种新型材料,具有独特的金属钝化效应及优异的物理屏蔽效应,在有机防腐涂料领域具有很好的应用前景。鉴于目前缺少关于GO/PANI复合颗粒的综述,本文从制备、形貌调控、防腐机理、防腐应用等方面出发,对GO/PANI复合颗粒进行了系统性介绍。首先,对GO/PANI复合颗粒的制备方法(包括溶液聚合、界面聚合以及电化学聚合等合成方法)进行了归纳整理,并对各方法的优缺点进行了总结;然后,分析了单体用量、掺杂酸种类、氧化剂用量等因素对复合颗粒形貌的影响;最后,在简单介绍GO/PANI复合颗粒防腐机理的基础上,系统介绍了其在不同基体涂料中的防腐改性,并对GO/PANI复合颗粒的未来发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘龙鑫
张玲
王瑞涛
孟腾飞
刘芳
谢强
张冬海
关键词:  氧化石墨烯  聚苯胺  复合颗粒  形貌调控  防腐    
Abstract: Metal corrosion has brought huge challenges to industrial production and safety protection. As one of the most important anti-corrosion measures at present, coating anti-corrosion is of great significance to study how to more effectively improve the anti-corrosion performance of coatings. As a new type of material, GO/PANI composite particles have unique metal passivation effects and excellent physical shielding effects, and have good application prospects in the field of organic anti-corrosion coatings. In view of the current lack of review on GO/PANI composite particles, this article systematically introduces GO/PANI composite particles from the aspects of preparation, morphology control, anti-corrosion mechanism, anti-corrosion application, etc. First, the preparation methods of GO/PANI composite particles, including solution polymerization, interfacial polymerization and electrochemical polymerization, are summarized, and the advantages and disadvantages of each method are summarized. Then the effects of factors such as the amount of monomer, type of doping acid, and amount of oxidant on the morphology of the compo-site particles are analyzed. Finally, on the basis of a brief introduction to the anti-corrosion mechanism of GO/PANI composite particles, the anti-corrosion modification in different matrix coatings is systematically introduced, and the future development direction of GO/PANI composite particles is prospected.
Key words:  graphene oxide    polyaniline    composite particles    morphology modulation    anti-corrosion
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TQ63  
通讯作者:  *张冬海,中科院过程工程研究所正高级工程师,博士研究生导师,全国专业标准化技术委员会委员。主要研究方向为无机/有机复合功能材料,通过有机基体结构修饰及无机颗粒的制备、表/界面设计等制备高性能的功能化复合材料。dhzhang@ipe.ac.cn   
作者简介:  刘龙鑫,中国矿业大学(北京)化学工程系硕士研究生。目前主要研究领域为无机/有机复合材料。
引用本文:    
刘龙鑫, 张玲, 王瑞涛, 孟腾飞, 刘芳, 谢强, 张冬海. GO/PANI复合颗粒的制备及防腐应用研究进展[J]. 材料导报, 2025, 39(10): 24040205-9.
LIU Longxin, ZHANG Ling, WANG Ruitao, MENG Tengfei, LIU Fang, XIE Qiang, ZHANG Donghai. Research Progress on the Preparation of Graphene Oxide/Polyaniline Composite Particles and Their Anti-corrosion Application. Materials Reports, 2025, 39(10): 24040205-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040205  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24040205
1 Wang X, Zhang X F, Caldona E B, et al. Journal of Environmental Chemical Engineering, 2021, 9(4), 105707.
2 Esmailzadeh M, Tammari E, Safarpour T, et al. Materials Chemistry and Physics, 2024, 317, 129097.
3 Liu C B, Zhao H C, Hou P M, et al. ACS Applied Materials & Interfaces, 2018, 1042, 36229.
4 Anwar S, Li X G. Journal of Coatings Technology and Research, 2024, 21(2), 461.
5 Li W, Tian H, Hou B. Materials and Corrosion, 2012, 63(1), 44.
6 Wang N, Diao X L, Zhang J, et al. Coatings, 2018, 8(6), 209.
7 Zhu Q S, Zhang K, Huang Y X, et al. Journal of Nanostructure in Chemistry, 2022, 12, 277.
8 Ali F, Dawood A, Hussain A, et al. Inorganic Chemistry Communications, 2024, 161, 112077.
9 Xiao Y S, Wang Y M, Wu X L, et al. High Performance Polymers, 2022, 35(3), 213.
10 Qiu S H, Chen C, Zheng W R, et al. Synthetic Metals, 2017, 229, 39.
11 Sarkar N, Sahoo G, Das R, et al. Industrial & Engineering Chemistry Research, 2016, 55(11), 2921.
12 Situ Y, Ji W W, Liu C Y, et al. Progress in Organic Coatings, 2019, 130, 158.
13 Tang S, Lei B, Feng Z Y, et al. Coatings, 2023, 13(6), 1120.
14 Jiřŕčková A, Jankovský O, Sofer Z, et al. Materials, 2022, 15(3), 920.
15 Zhu X M, Ni Z B, Dong L L, et al. Progress in Organic Coatings, 2019, 133, 106.
16 Jangid N K, Jadoun S, Kaur N. European Polymer Journal, 2020, 125, 109485.
17 Nasir A, Raza A, Tahir M, et al. Materials Research Bulletin, 2023, 157, 112006.
18 Bharadiya P, Jain R, Chaudhari V, et al. Polymer Composites, 2019, 40(2), 1716.
19 Liu Y, Deng R J, Wang Z, et al. Journal of Materials Chemistry, 2012, 22, 13619.
20 Chen Z H, Cai Y D, Lu Y Y, et al. Coatings, 2022, 12(6), 824.
21 Yang S Q, Zhu S, Hong R Y. Coatings, 2020, 10(12), 1215.
22 Li T, Qin Z Y, Liang B L, et al. Electrochimica Acta, 2015, 177, 343.
23 Kausar A. Polymer-Plastics Technology and Materials, 2020, 59(16), 1.
24 Iyisan B, Landfester K. Macromolecular Rapid Communications, 2018, 40(1), 1800577.
25 Zhu J H, Chen M J, Qu H L, et al. Polymer, 2012, 53(25), 5953.
26 Mooss V A, Bhopale A A, Deshpande P P, et al. Chemical Papers, 2017, 71(8), 1515.
27 Gul H, Shah A A, Krewer U, et al. Nanomaterials, 2020, 10(1), 118.
28 Baniasadi H, Ramazani S A A, Mashayekhan S, et al. Synthetic Metals, 2014, 196, 199.
29 Wang Y M, Chen K, Li T X, et al. Synthetic Metals, 2014, 198, 293.
30 Gupta R, Singhal M, Chaudhary J P. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 632, 127806.
31 Song E, Choi J. Nanomaterials, 2013, 3, 498.
32 Gupta R, Singhal M, Nataraj S K, et al. RSC Advances, 2016, 6(111), 110416.
33 Bumaa B, Uyanga E, Sevjidsuren G, et al. Polymer Bulletin, 2021, 79, 7443.
34 Nguyen V H, Tang L L, Shim J J. Colloid and Polymer Science, 2013, 291(9), 2237.
35 Zhang K, Zhang L L, Zhao X S, et al. Chemistry of Materials, 2010, 22, 1392.
36 Bharadiya P, Jain R, Chaudhari V, et al. Polymer Composites, 2019, 40(2), 1716.
37 Rahman S U, Röse P, Shah A U H A, et al. Polymers, 2020, 12(10), 2212.
38 Xin G X, Wang Y H, Liu X X, et al. Electrochimica Acta, 2015, 167, 254.
39 Jiang X B, Lou S, Chen D, et al. Journal of Electroanalytical Chemistry, 2015, 744, 95.
40 Liu S Y, Liu L, Guo H X, et al. Electrochemistry Communications, 2019, 98, 110.
41 Liang L, Liu J, Windisch J C F, et al. Angewandte Chemie International Edition, 2002, 41(19), 3665.
42 Qiu C C, Liu D M, Jin K, et al. Materials Chemistry and Physics, 2017, 198, 90.
43 He W, Zhang W N, Li Y, et al. Synthetic Metals, 2012, 162(13), 1107.
44 Jin T, Zhang Q, Yin H, et al. Nanotechnology, 2020, 31(28), 285704.
45 Fang F F, Dong Y Z, Choi H J. Polymer, 2018, 158, 176.
46 Zhang Y S, Xu W H, Yao W T, et al. Journal of Physical Chemistry C, 2009, 113, 8588.
47 Habib H, Wani I S, Husain S. Journal of Energy Storage, 2022, 55, 105732.
48 Zhao Y, Tang G S, Yu Z Z, et al. Carbon, 2012, 50(8), 3064.
49 Mooss V A, Athawale A A. Journal of Polymer Science Part A, 2016, 54, 3778.
50 Wang H L, Hao Q L, Yang X J, et al. ACS Applied Materials & Interfaces, 2010, 23, 821.
51 Zheng J, Ma X F, He X C, et al. Procedia Engineering, 2012, 27, 1478.
52 Ingle R V, Shaikh S F, Bhujbal P K, et al. ES Materials & Manufacturing, 2020, 8, 54.
53 Zhou S X, Tao X Y, Ma J, et al. Vacuum, 2017, 143, 63.
54 Zhang Y H, Duan Y P, Liu J, et al. The Journal of Physical Chemistry C, 2018, 122(4), 2032.
55 Stejskal J, Sapurina I, Trchová M, et al. Macromolecules, 2008, 41(10), 3530.
56 Stejskal J, Riede A, Hlavatá D, et al. Synthetic Metals, 1998, 96(1), 55.
57 Cui B, Gao X K. Journal of Electronic Materials, 2022, 51, 6160.
58 Xiao F J, Qian C, Guo M Y, et al. Progress in Organic Coatings, 2018, 125, 79.
59 Jiang X Q, Setodoi S, Fukumoto S, et al. Carbon, 2014, 67, 662.
60 Zhu H X, Chen Y Y, Li H Y, et al. Macromolecular Rapid Communications, 2019, 40(5), 1800252.
61 Zhang Y, Qian L, Zhao W, et al. Journal of the Electrochemical Society, 2018, 165(9), 510.
62 Ding J H, Rahman O U, Peng W J, et al. Applied Surface Science, 2018, 427, 981.
63 Arianpouya N, Shishesaz M, Arianpouya M, et al. Surface & Coatings Technology, 2013, 216, 199.
64 Lee W, Lee J U, Jung B M, et al. Carbon, 2013, 65, 296.
65 Ahmed M K, Shahid M, Khan Z A, et al. Materials, 2018, 11(11), 2239.
66 Taheri N N, Ramezanzadeh B, Mahdavian M, et al. Journal of Industrial and Engineering Chemistry, 2018, 63, 322.
67 Deyab M A. Journal of Molecular Liquids, 2020, 313, 113533.
68 Rathnayake R M N M, Mantilaka M M M G, Hara M, et al. Applied Surface Science, 2017, 410, 445.
69 Zou M M, Li X R, Shen Y D, et al. Fine Chemicals, 2018, 35(5), 891 (in Chinese).
邹明明, 李小瑞, 沈一丁, 等. 精细化工, 2018, 35(5), 891.
70 Tang K H, Zhang A L, Ge T J, et al. Materials Today Communications, 2021, 26, 101879.
71 Wu D Q, Su Q, Chen L, et al. Applied Surface Science, 2022, 601, 154156.
72 Lubwama M, Corcoran B, Sayers K, et al. Surface and Coatings Techno-logy, 2012, 206(23), 4881.
73 Sheng X X, Cai W X, Zhong L, et al. Industrial & Engineering Chemistry Research, 2016, 55(31), 8576.
74 Cai K W, Zuo S X, Luo S P, et al. RSC Advances, 2016, 6(98), 95965.
[1] 程亚杰, 许子琛, 王强, 魏浩, 孙希平, 王林. 一步法制备三维杆状聚吡咯及其吸波性能研究[J]. 材料导报, 2025, 39(8): 24010018-6.
[2] 李少飞, 魏智强, 乔宏霞, 曹辉, 赵辛源, 葸玲玲. 纳米氧化石墨烯与聚合物改性水泥基复合材料性能研究进展[J]. 材料导报, 2025, 39(10): 24040171-12.
[3] 曲作鹏, 刘吉臻, 田欣利, 魏啸天, 汪瑞军, 王永田, 王海军. 高参数垃圾电站锅炉防腐涂层体系的设计策略与评价[J]. 材料导报, 2024, 38(8): 22110142-6.
[4] 陈渊泽, 牛春晖, 王雷, 杨明庆, 张世玉, 吕勇. 聚苯胺红外电致变色器件研究进展[J]. 材料导报, 2024, 38(5): 22090259-10.
[5] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[6] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[7] 朱玉方, 张慧丽, 梁丰国, 杨新伟, 陈长科, 买买提江·依米提, 马俊红. 还原氧化石墨烯的可控制备及表征[J]. 材料导报, 2024, 38(12): 22110271-6.
[8] 任鑫, 王浩鑫, 孙涛, 王港, 孟超, 邱星武. 单脉冲电沉积Ni-纳米TiC-氧化石墨烯复合镀层结构及磨损性能[J]. 材料导报, 2024, 38(11): 22060057-7.
[9] 周宇祥, 施天宇, 赵晨媛, 尹海宏, 宋长青, 郁可. 聚苯胺包覆的硫化锌-碳纳米管用作正极载体材料提高锂硫电池性能[J]. 材料导报, 2024, 38(1): 22060085-7.
[10] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[11] 王姗迟, 潘嵩玥, 孙俊玲, 赵燕. 热阻型氧化石墨烯基火灾早期预警传感器的研究进展[J]. 材料导报, 2023, 37(24): 22010297-9.
[12] 满世甲, 杜雪岩, 申永前, 龙建. 镍渣衍生Fe3O4/聚苯胺复合材料的制备及微波吸收性能研究[J]. 材料导报, 2023, 37(22): 22030093-6.
[13] 刘新宇, 刘惠, 王新杰, 朱平华, 陈春红, 周心磊. 氧化石墨烯改性地聚物再生混凝土的抗硫酸溶蚀性能研究[J]. 材料导报, 2023, 37(21): 22010212-6.
[14] 颜冬仙, 樊新. rGO/NiCo复合材料制备及电化学性能研究[J]. 材料导报, 2023, 37(18): 22030311-6.
[15] 李晓丹, 刘宏宇, 何瑞, 王锋. 石墨烯改性及在有机涂层中的形态[J]. 材料导报, 2023, 37(17): 21100195-9.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed