Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 22060057-7    https://doi.org/10.11896/cldb.22060057
  金属与金属基复合材料 |
单脉冲电沉积Ni-纳米TiC-氧化石墨烯复合镀层结构及磨损性能
任鑫1,*, 王浩鑫1, 孙涛1, 王港1, 孟超1, 邱星武2
1 辽宁工程技术大学材料科学与工程学院,辽宁 阜新 123000
2 四川建筑职业技术学院多组元合金德阳市重点实验室,四川 德阳 618000
Microstructure and Wear Resistance of Ni-nano TiC-GO Composite Coatings Based on Single Pulsed Electrodeposition
REN Xin1,*, WANG Haoxin1, SUN Tao1, WANG Gang1, MENG Chao1, QIU Xingwu2
1 School of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, Liaoning, China
2 Multicomponent Alloys Key Laboratory of Deyang City, Sichuan College of Architectural Technology, Deyang 618000, Sichuan, China
下载:  全 文 ( PDF ) ( 62055KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究利用单脉冲电沉积技术在Q235钢表面制备了一种新型的Ni基减摩耐磨三元复合镀层,首先通过研究氧化石墨烯(GO)浓度对Ni-纳米TiC基复合镀层形貌、镀速及硬度的影响确定了最佳的GO添加量,然后利用X射线衍射仪(XRD)、拉曼光谱仪(Raman)和X射线光电子能谱仪(XPS)等设备对三元复合镀层的结构进行了表征。最后与Ni-纳米TiC复合镀层等进行了对比,研究了三元复合镀层的硬度及耐磨损性能。结果表明:镀液中GO的最佳质量浓度为200 mg/L。此时,Ni-纳米TiC-GO复合镀层的表面均匀致密,粗糙度值Ra=3.087 μm。XRD和拉曼光谱等分析结果表明纳米TiC和GO成功复合到Ni基镀层之中。Ni-纳米TiC-GO复合镀层的硬度为726.3HV,约是Ni-纳米TiC复合镀层(463.8HV)的1.5倍。Ni-纳米TiC-GO复合镀层的平均摩擦系数为0.108,相比于Ni-纳米TiC复合镀层(0.285),其具备更好的减摩耐磨性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任鑫
王浩鑫
孙涛
王港
孟超
邱星武
关键词:  单脉冲  氧化石墨烯  Ni基复合镀层  微观结构  耐磨损性能    
Abstract: In this study, a new type of Ni-based antifriction and wearable ternary composite coating was prepared on the surface of Q235 steel by single pulse electrodeposition technology. Firstly, the best GO addition was determined by studying the effect of the concentration of graphene oxide (GO) on the morphology, plating rate and hardness of Ni-nano TiC-based composite coating. Then, the structure of ternary composite coating was characterized by X-ray diffraction (XRD), Raman spectroscopy (Raman) and X-ray photoelectron spectroscopy (XPS). Finally, the hardness and wear resistance of ternary composite coating were studied by comparing with Ni-nano TiC composite coating. The results show that the optimal mass concentration of GO in the plating solution is 200 mg/L. At this time, the surface of Ni-nano TiC-GO composite coating is uniform and dense, and the roughness value Ra is 3.087 μm. XRD and Raman spectra results show that nano TiC and GO are successfully incorporated into Ni-based coatings. The hardness of Ni-nano TiC-GO composite coating is 726.3HV, about 1.5 times that of Ni-nano TiC compo-site coating (463.8HV). The average friction coefficient of Ni-nano TiC-GO composite coating is 0.108, which has better friction reduction and wear resistance than Ni-nano TiC composite coating (0.285).
Key words:  simple-pulse    graphene oxide    nickel-based composite coating    microstructure    wear resistance
发布日期:  2024-06-25
ZTFLH:  TG174  
基金资助: 国家自然科学基金(51805235);辽宁省教育厅科学研究经费项目(JYTMS20230790)
通讯作者:  *任鑫,辽宁工程技术大学教授、硕士研究生导师。2005年7月,在南京理工大学获得材料学专业工学博士学位。以第一作者在国内外学术期刊上发表论文60余篇,主持参与课题10余项。研究工作主要围绕材料表面改性、材料腐蚀与防护等。lnturen@163.com   
引用本文:    
任鑫, 王浩鑫, 孙涛, 王港, 孟超, 邱星武. 单脉冲电沉积Ni-纳米TiC-氧化石墨烯复合镀层结构及磨损性能[J]. 材料导报, 2024, 38(11): 22060057-7.
REN Xin, WANG Haoxin, SUN Tao, WANG Gang, MENG Chao, QIU Xingwu. Microstructure and Wear Resistance of Ni-nano TiC-GO Composite Coatings Based on Single Pulsed Electrodeposition. Materials Reports, 2024, 38(11): 22060057-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060057  或          http://www.mater-rep.com/CN/Y2024/V38/I11/22060057
1 Qi Q, Wang L J, Liu Y, et al. Journal of Alloys and Compounds, 2018, 757, 273.
2 Tan N, Liu J, Lou L Y, et al. Royal Society Open Science, 2021, 8(3), 202089.
3 Li H Z, Zhao G Z, Li Y J, et al. Protection of Metals and Physical Chemistry of Surfaces, 2021, 57(3), 535.
4 Li C Y, Xia F F, Ma C Y, et al. Journal of Materials Engineering and Performance, 2021, 30(8), 6336.
5 Jin H, Ji R J, Dong T C, et al. Surface & Coatings Technology, 2021, 421, 127368.
6 Shahzad K, Radwan A B, Fayyaz O, et al. Ceramics International, 2021, 47(13), 19123.
7 Morteza T, Omid Y, Mahmood F N. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2019, 233(1), 94.
8 Cheng Q, Yao Z J, Zhang F, et al. Materials Research Express, 2020, 6(12), 126434.
9 He Y, Wang S C, Sun W T, et al. Coatings, 2019, 9(2), 148.
10 Liu J S, Shi Y. Surface & Coatings Technology, 2021, 412, 127044.
11 Kotkowiak M, Piasecki A, Kulka M. Ceramics International, 2019, 45(14), 17103.
12 Ying L X, Liu Y, Liu G N, et al. Rare Metal Materials and Engineering, 2015, 44(1), 28.
13 Yang M S, Liu X B, Fan J W, et al. Applied Surface Science, 2012, 258(8), 3757.
14 Cai B, Tan Y F, He L, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(2), 392.
15 Sahoo C K, Masanta M. Journal of Materials Processing Technology, 2016, 243, 229.
16 Wang J Y, Peng C, Tang J Z, et al. Journal of Alloys and Compounds, 2018, 737, 515.
17 Freshteh A E, Azadi M, Tavakoli H. Surface Engineering and Applied Electrochemistry, 2020, 56(2), 171.
18 Mahidashti Z, Aliofkhazraei M, Lotfi N. Transactions of the Indian Institute of Metals, 2018, 71(2), 257.
19 Zhang W W, Li B S, Ji C C. Ceramics International, 2019, 45(11), 14015.
20 Yan C Q, Namachivayam K, Li H, et al. Ceramics International, 2020, 46(10), 15714.
21 Uysal M, Algul H, Duru E, et al. Surface & Coatings Technology, 2021, 410, 126942.
22 Jin H C, Gobinda G, Dhani R D, et al. Acta Metallurgica Sinica, 2020, 33(4), 573.
23 Qiu C, Liu D M, Jin K, et al. Diamond & Related Materials, 2017, 76, 150.
24 Wu S Q, Ren X, Chu X, et al. Materials Reports, 2020, 34(24), 24080 (in Chinese).
吴双全, 任鑫, 初鑫, 等. 材料导报, 2020, 34(24), 24080.
25 Ren X, Jiang R K, Chu X, et al. Transactions of Materials and Heat Treatment, 2021, 42(1), 165 (in Chinese).
任鑫, 江仁康, 初鑫, 等. 材料热处理学报, 2021, 42(1), 165.
26 Wang H X, Mao X Y, Shen T, et al. Materials Engineering, 2017, 45(1), 52 (in Chinese).
王红星, 毛向阳, 沈彤, 等. 材料工程, 2017, 45(1), 52.
27 Liu W M, Chen G G, Wang C M, et al. Materials Reports, 2016, 30(11), 7 (in Chinese).
刘委明, 陈国贵, 王从敏, 等. 材料导报, 2016, 30(11), 7.
28 Elhadji M S, Oluwatobi S O, Abhijit S, et al. Materials Letters, 2016, 171, 137.
29 Akhavan O. Carbon, 2010, 48(2), 509.
30 Sivasakthi P, Ramesh B, Maruthai C. Materials Science & Engineering C, 2016, 58, 782.
31 Zhou X W, Shen Y F. Surface & Coatings Technology, 2013, 235, 433.
32 Abdel W, Asim J, Yahia I S, et al. Superlattices and Microstructures, 2016, 94, 108.
33 Guo H X, An J H, Liang J. Surface Technology, 2020, 49(3), 224 (in Chinese).
郭惠霞, 安景花, 梁军. 表面技术, 2020, 49(3), 224.
34 Diana B, Ali E, Alexander V Z, et al. Diamond & Related Materials, 2015, 54, 91.
35 Chen L, Wang L Q, Zeng Z X, et al. Surface & Coatings Technology, 2006, 201(3-4), 599.
36 Praveen B M, Venkatesha T V. Applied Surface Science, 2008, 254(8), 2418.
[1] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[2] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[3] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[4] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[5] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[6] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[7] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[8] 周后明, 周金虎, 刘刚, 陈皓月. 金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能[J]. 材料导报, 2024, 38(2): 22040020-5.
[9] 朱德举, 初开丹, 郭帅成, 史才军. 基于海水海砂混凝土真实孔溶液浸泡环境下BFRP筋拉伸性能的退化[J]. 材料导报, 2024, 38(11): 23030043-8.
[10] 龚翱翔, 徐驰, 安瞻, 佟振峰. 15-15Ti ODS奥氏体钢晶粒组织与纳米粒子的透射电镜表征[J]. 材料导报, 2024, 38(10): 23010111-6.
[11] 冯振宇, 张宏宇, 马佳威, 陈琨, 周良道, 沈培良, 陈向明. 晶体塑性有限元方法在增材制造金属材料力学性能研究中的应用[J]. 材料导报, 2024, 38(1): 22070235-10.
[12] 吴偲, 范思远, 王兆程, 韩照明. 沥青宏观性能与微观化学组成关系的研究进展[J]. 材料导报, 2023, 37(S1): 23020053-5.
[13] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[14] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[15] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed