Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 23010111-6    https://doi.org/10.11896/cldb.23010111
  金属与金属基复合材料 |
15-15Ti ODS奥氏体钢晶粒组织与纳米粒子的透射电镜表征
龚翱翔1, 徐驰2, 安瞻1, 佟振峰1,*
1 华北电力大学核科学与工程学院,北京 102206
2 北京师范大学核科学与技术学院,射线束技术教育部重点实验室,北京 100875
Transmission Electron Microscopy Characterization of Grain Structure and Nanoparticles of 15-15Ti ODS Austenitic Steel
GONG Aoxiang1, XU Chi2, AN Zhan1, TONG Zhenfeng1,*
1 School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China
2 Key Laboratory of Beam Technology of the Ministry of Education, School of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
下载:  全 文 ( PDF ) ( 20101KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 15-15Ti奥氏体不锈钢由于其优异的耐腐蚀性能和高温力学性能成为钠冷快堆包壳的候选材料,其高温力学性能和抗辐照肿胀能力可以通过氧化物弥散强化(ODS)进行增强。本工作对通过机械合金化以及锻造工艺制备的15-15Ti ODS奥氏体钢和作为参比材料的15-15Ti奥氏体钢的微观结构进行研究,对ODS钢中氧化物颗粒的分布以及强化机制有了较为深入的认识。研究发现氧化物弥散粒子分布总体均匀但有成团聚集倾向。Y-Zr-O粒子的平均粒径为(9.97±0.04) nm,平均粒距为(17.25±0.68) nm,数密度约为4.49×1022 m-3。在透射电镜明场像下观察到ODS样品中氧化物颗粒对位错的钉扎作用。扫描透射(STEM)结合能谱分析显示ODS样品中有两种氧化物,分别为占比较少的Al2O3以及占比较多的Y4Zr3O12。高分辨电镜表征发现第二相粒子与基体之间出现共格或半共格界面的迹象,并且少数粒子周围出现非晶化界面。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚翱翔
徐驰
安瞻
佟振峰
关键词:  15-15Ti  奥氏体钢  微观结构  氧化弥散强化颗粒  透射电子显微镜    
Abstract: Due to their excellent corrosion resistance and high temperature mechanical properties, the 15-15Ti austenitic stainless steels have been selected as a candidate cladding material for the sodium-cooled fast reactor. Its high-temperature mechanical strength and resistance to irradiation swelling can be enhanced by oxide dispersion strengthening (ODS). In this study, 15-15Ti ODS austenitic steel was manufactured by mechanical alloying and forging processes. The 15-15Ti steel manufactured following the same procedures without additions of ODS particles was chosen as the control sample material. The microstructure of the sample was characterized by multiple transmission electron microscopy (TEM) techniques. The dispersion characteristics and strengthening mechanism of oxide particles in the ODS austenitic stainless steel were comprehensively investigated. The special distribution of the oxide dispersion particles was generally uniform, however, a clustering tendency was also identified. The average size of the particles was estimated to be (9.97±0.04) nm, the average distances between the particles was (17.25±0.68) nm, and the number density was about 5.32×1022 m-3. The pinning effect of oxide particles on dislocations was observed in the ODS samples through TEM bright field imaging. Two oxides were revealed in the ODS sample by scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray (EDX) spectroscopy, which consists a small proportion of Al2O3 particles and a large proportion of Y4Zr3O12 particles. High-resolution transmission electron microscopy characterizations reveal signs of a coherent or semi-coherent interface between the second-phase particle and the 15-15Ti matrix, and a few particles appear around amorphous interfaces.
Key words:  15-15Ti steel    austenitic steel    microstructure    oxide-dispersed strengthening particles    transmission electron microscopy
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  TL341  
基金资助: 国家自然科学基金(U1967212);国防科技工业抗辐照应用技术创新中心创新基金项目(KFZC2020020601)
通讯作者:  *佟振峰,华北电力大学核科学与工程学院教授、博士研究生导师。西安交通大学本科、硕士,中国原子能科学研究院博士。2007—2008年瑞士保罗谢尔研究所访问学者;2003—2020年中国原子能科学研究院研究员、反应堆材料方向学术带头人;2020年至今,华北电力大学核科学与工程学院教授、博士研究生导师、核材料研究团队负责人。主要从事新型核材料开发、材料辐照损伤表征与评价、反应堆关键部件材料应用性能与老化评估、材料辐照损伤计算模拟与机器学习等方向的研究。发表学术论文30余篇,获得国家发明专利10余项。zhenfeng_tong@ncepu.edu.cn   
作者简介:  龚翱翔,2021年7月毕业于华北电力大学,获得工学学士学位。现为华北电力大学核科学与工程学院硕士研究生,在佟振峰教授的指导下进行研究。目前主要研究领域为氧化弥散强化合金的辐照损伤。
引用本文:    
龚翱翔, 徐驰, 安瞻, 佟振峰. 15-15Ti ODS奥氏体钢晶粒组织与纳米粒子的透射电镜表征[J]. 材料导报, 2024, 38(10): 23010111-6.
GONG Aoxiang, XU Chi, AN Zhan, TONG Zhenfeng. Transmission Electron Microscopy Characterization of Grain Structure and Nanoparticles of 15-15Ti ODS Austenitic Steel. Materials Reports, 2024, 38(10): 23010111-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010111  或          http://www.mater-rep.com/CN/Y2024/V38/I10/23010111
1 Vatulin A V, Tselishchev A V. Metal Science and Heat Treatment, 2004, 46, 463.
2 Zinkle S J, Busby J T. Materials Today, 2009, 12(11), 12.
3 Garner F A, Toloczko M B, Sencer B H. Journal of Nuclear Materials, 2000, 276, 123.
4 Zhang D H, Qiao P R, Yang Y, et al. Atomic Energy Science and Technology, 2019, 53(10), 1816 (in Chinese).
张东辉, 乔鹏瑞, 杨勇, 等. 原子能科学技术, 2019, 53(10), 1816.
5 Yvon P, Le Flem M, Cabet C, et al. Nuclear Engineering and Design, 2015, 294, 161.
6 Zinkle S J, Boutard J L, Hoelzer D T, et al. Nuclear Fusion, 2017, 57(9), 092005.
7 De Carlan Y, Bechade J L, Dubuisson P, et al. Journal of Nuclear Materials, 2009, 386-388, 430.
8 Hsiung L, Fluss M, Tumey S, et al. Journal of Nuclear Materials, 2011, 409(2), 72.
9 Mo K, Zhou Z, Miao Y, et al. Journal of Nuclear Materials, 2014, 455, 376.
10 Oka H, Watanabe M, Kinoshita H, et al. Journal of Nuclear Materials, 2011, 417, 279.
11 Zhang H K, Yao Z, Zhou Z, et al. Journal of Nuclear Materials, 2014, 455, 242.
12 Miao Y, Mo K, Zhou Z, et al. Journal of Nuclear Materials, 2016, 480, 195.
13 Miao Y, Mo K, Zhou Z, et al. Materials Science and Engineering:A, 2015, 625, 146.
14 Zhao R L, Jia H D, Cao S G, et al. Chinese Journal of Engineering, 2023, 45(1), 107 (in Chinese).
赵瑞林, 贾皓东, 曹书光, 等. 工程科学学报, 2023, 45(1), 107.
15 Odette G R, Alinger M J, Wirth B D. Annual Review of Materials Research, 2008, 38(1), 471.
16 Dong H Q. Effect of Zr, Hf additon on the microstructure and tensile properties of FeCrAl ODS steels. Master’s Thesis, Tianjin University, China, 2017 (in Chinese).
董红庆. Zr、Hf对Fe-Cr-Al系ODS钢显微组织和拉伸性能的影响. 硕士学位论文, 天津大学, 2017.
17 Williams D B, Carter C B. Transmission electron microscopy:a textbook for materials science, Plenum Press, USA, 1996.
18 Dou P, Kimura A, Kasada R, et al. Journal of Nuclear Materials, 2014, 444, 441.
19 Koch C C, Cavin O B, McKamey C G, et al. Applied Physics Letters, 1983, 43(11), 1017.
20 Song M, Chen K H, Huang L P. Rare Metal Materials and Engineering, 2007(6), 1005 (in Chinese).
宋旼, 陈康华, 黄兰萍. 稀有金属材料与工程, 2007(6), 1005.
21 Zhang L, Song R, Zhao C, et al. Materials Science and Engineering:A, 2015, 640, 225.
22 Susila P, Sturm D, Heilmaier M, et al. Journal of Materials Science, 2010, 45(17), 4858.
23 Zhang S L, Wu Z F, Sun B R, et al. Materials Characterization, 2022, 194, 112353.
24 Martin G. Physical Review B, 1984, 30(3), 1424.
25 Praud M, Mompiou F, Malaplate J, et al. Journal of Nuclear Materials, 2012, 428, 90.
26 Bailey J E, Hirsch P B. Philosophical Magazine, 1960, 5(53), 485.
27 Kim J H, Byun T S, Hoelzer D T, et al. Materials Science and Enginee-ring:A, 2013, 559, 111.
28 Stoller R E, Zinkle S J. Journal of Nuclear Materials, 2000, 283-287, 349.
29 Kubena I, Fournier B, Kruml T. Journal of Nuclear Materials, 2012, 424, 101.
30 Preininger D. Journal of Nuclear Materials, 2002, 307-311, 514.
31 Chauhan A, Bergner F, Etienne A, et al. Journal of Nuclear Materials, 2017, 495, 6.
32 Sun Y Z. Study on microstructure and oxide nanoparticles in ODS steel. Master’s Thesis, Hunan University, China, 2021 (in Chinese).
孙煜舟. ODS钢中微观结构与氧化物纳米粒子研究. 硕士学位论文, 湖南大学, 2021.
33 Ramar A, Baluc N, Schäublin R. Journal of Nuclear Materials, 2009, 386-388, 515.
34 Klimiankou M, Lindau R, Möslang A, et al. Powder Metallurgy, 2005, 48(3), 277.
35 Dou P, Kimura A, Kasada R, et al. Journal of Nuclear Materials, 2017, 485, 189.
[1] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[2] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[3] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[4] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[5] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[6] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[7] 季雪梅, 郝驰, 朱秀梅, 苏江滨, 何祖明, 唐斌, 朱贤方. 二硫化钼在电子束辐照下的缺陷结构演变及其物理机制研究进展[J]. 材料导报, 2024, 38(3): 22070109-11.
[8] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[9] 周后明, 周金虎, 刘刚, 陈皓月. 金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能[J]. 材料导报, 2024, 38(2): 22040020-5.
[10] 冯振宇, 张宏宇, 马佳威, 陈琨, 周良道, 沈培良, 陈向明. 晶体塑性有限元方法在增材制造金属材料力学性能研究中的应用[J]. 材料导报, 2024, 38(1): 22070235-10.
[11] 吴偲, 范思远, 王兆程, 韩照明. 沥青宏观性能与微观化学组成关系的研究进展[J]. 材料导报, 2023, 37(S1): 23020053-5.
[12] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[13] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[14] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[15] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed