Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24040171-12    https://doi.org/10.11896/cldb.24040171
  无机非金属及其复合材料 |
纳米氧化石墨烯与聚合物改性水泥基复合材料性能研究进展
李少飞1,2, 魏智强1,2,3,4, 乔宏霞1,2,*, 曹辉1,2, 赵辛源1,2, 葸玲玲1,2
1 兰州理工大学土木工程学院,兰州 730050
2 甘肃省先进土木工程材料工程研究中心,兰州 730050
3 兰州理工大学理学院,兰州 730050
4 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Research Progress on Properties of Polymer Cement-based Composites Modified by Nano-graphene Oxide
LI Shaofei1,2, WEI Zhiqiang1,2,3,4, QIAO Hongxia1,2,*, CAO Hui1,2, ZHAO Xinyuan1,2, XI Lingling1,2
1 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 Gansu Advanced Civil Engineering Materials Engineering Research Center, Lanzhou 730050, China
3 College of Science, Lanzhou University of Technology, Lanzhou 730050, China
4 State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 37562KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚合物改性水泥基材料兼具有机材料和无机材料的优势,因其优良的强度、粘结性、防水性而被广泛用作混凝土结构修复材料。然而,聚合物存在延缓水泥水化、降低复合材料早期力学性能、温度敏感性、易老化等不足。氧化石墨烯(GO)作为一种新型纳米材料通过调控水泥基材料内部的微观结构,可以极大地改善复合材料的宏观力学性能。本文分别综述了几种常见聚合物、GO改性水泥基材料性能的研究进展,讨论了聚合物和GO对水泥基材料水化特性、水化产物、力学性能的影响,总结了二者对水泥基材料的改性机理。在此基础上,分别总结了聚合物和GO改性水泥基材料所存在的问题。最后,提出了采用GO改性聚合物水泥基复合材料,发挥GO和聚合物的各自优势,讨论了GO改性聚合物水泥基复合材料当前存在的问题和应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李少飞
魏智强
乔宏霞
曹辉
赵辛源
葸玲玲
关键词:  纳米氧化石墨烯  聚合物  水泥基材料  水化进程  力学性能  改性机理    
Abstract: Polymer-modified cement-based materials have the advantages of both organic and inorganic materials such as excellent strength, cohesiveness and water resistance, are widely used as concrete structural repair materials. However, the addition of polymer has some disadvantages such as delaying the hydration of cement, reducing the early mechanical properties of composite, temperature sensitivity and easy aging. As a new nanomaterial, graphene oxide (GO) can greatly improve the macroscopic mechanical properties of cement-based composites by regulating its internal microstructure. This paper reviews the research progress of several common polymers and GO modified cement-based materials, discusses the effects of polymers and GO on the hydration properties, hydration products and mechanical properties of cement-based materials, and summarizes the modification mechanism of the two on cement-based materials. On this basis, the existing problems of polymer and GO modified cement-based materials are summarized. Finally, the use of GO modified polymer cement-based composites is put forward to give full play to the respective advantages of GO and polymer, and the existing problems and application prospects of GO modified polymer cement-based compo-sites are discussed.
Key words:  nano graphene oxide    polymer    cement-based material    hydration process    mechanical property    modification mechanism
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52268042);甘肃省自然科学基金(22JR5RA253)
通讯作者:  *乔宏霞,博士,兰州理工大学土木工程学院教授、博士研究生导师。目前主要从事混凝土结构材料、混凝土耐久性、新型建筑材料等方面的研究。qhxlut7706@163.com   
作者简介:  李少飞,兰州理工大学土木工程学院博士研究生,在魏智强教授和乔宏霞教授指导下进行研究,目前主要研究领域为新型纳米建筑功能材料。
引用本文:    
李少飞, 魏智强, 乔宏霞, 曹辉, 赵辛源, 葸玲玲. 纳米氧化石墨烯与聚合物改性水泥基复合材料性能研究进展[J]. 材料导报, 2025, 39(10): 24040171-12.
LI Shaofei, WEI Zhiqiang, QIAO Hongxia, CAO Hui, ZHAO Xinyuan, XI Lingling. Research Progress on Properties of Polymer Cement-based Composites Modified by Nano-graphene Oxide. Materials Reports, 2025, 39(10): 24040171-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040171  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24040171
1 Tong T T, Li Z L, Liu S D, et al. Materials Reports, 2024, 38(7), 130 (in Chinese).
童涛涛, 李宗利, 刘士达, 等. 材料导报, 2024, 38(7), 130.
2 Zhang X F, Peng Z G, Feng Q, et al. Journal of Building Engineering, 2024, 83, 108456.
3 Lei D Y, Li M A, Zhang P, et al. Journal of the Chinese Ceramic Society, 2023, 51(11), 2876 (in Chinese).
雷东移, 李明昂, 张鹏, 等. 硅酸盐学报, 2023, 51(11), 2876.
4 Wei J J, Farzadnia N, Khayat, K H. Construction and Building Materials, 2024, 414, 134566.
5 Sun H, Luo L, Li X, et al. Journal of Building Engineering, 2024, 86, 108804.
6 Yang Z Y, Lu F, Zhan X W, et al. Journal of Building Engineering, 2024, 84, 108688.
7 Song H L, Liu T, Gauvin F. Journal of Materials Research and Technology- JMR&T, 2024, 28, 3121.
8 Xin H P, Guo D G, Pizzi A. Polymers, 2024, 16(2), 204.
9 Chen X M, Wang J, Jiao H Z, et al. Materials, 2023, 16(19), 6475.
10 Wang L S, Cao M, Li X B, et al. Construction and Building Materials, 2023, 401, 132940.
11 Mohanty S, Roy N, Singh S P, et al. Cold Regions Science and Technology, 2021, 191, 103358.
12 Bayat H, Banar R, Nikravan M, et al. Journal of Building Engineering, 2024, 86, 108737.
13 Badalyan M M, Muradyan N G, Shainova R S, et al. Buildings, 2024, 14(3), 757.
14 Xu H T. Study on the properties of polymer modified cement mortar. Master’s Thesis, Zhengzhou University, China, 2009 (in Chinese).
徐洪涛. 聚合物改性水泥砂浆性能研究. 硕士学位论文, 郑州大学, 2009.
15 Ohama Y. Cement and Concrete Composites, 1998, 20(2), 189.
16 Betioli A M, Gleize P J P, John V M, et al. Cement and Concrete Composites, 2011, 34(2), 255.
17 Cai R Z, Qi H, Mao J Z, et al. Journal of Materials in Civil Engineering, 2022, 34(4), 04022012.
18 Zhao H, Deng M, Tang M S. Journal of Thermal Analysis and Calorimetry, 2013, 112(3), 1465.
19 Feng X, Garboczi E J, Bentz D P, et al. Cement and Concrete Research, 2004, 34(10), 1787.
20 Peng Y, Zeng Q, Xu S L, et al. Journal of the American Ceramic Society, 2020, 103(5), 3373.
21 Zhang G F, Wang Y W, Wang P M, et al. Journal of Thermal Analysis and Calorimetry, 2016, 124(3), 1229.
22 Liu Q, Lu Z Y, Hu X S, et al. Journal of Building Engineering, 2021, 42, 103048.
23 Liang G W, Ni D Y, Li H X, et al. Construction and Building Materials, 2021, 272, 121891.
24 Li H X, Gu L N, Dong B Q, et al. Construction and Building Materials, 2020, 262, 120097.
25 Li H X, Xue Z, Liang H, et al. Journal of Building Engineering, 2021, 41, 102780.
26 Kim M O. Applied Sciences-Basel, 2020, 10(3), 1061.
27 Ohama Y. ACI Materials Journal, 1987, 84(6), 511.
28 Van Gemert D, Beeldens A. In:7th Asian Symposium on Polymers in Concrete. Istanbul, 2012, pp.59.
29 Beeldens A, Gemert Van D, Schorn H, et al. Materials and Structures, 2005, 38, 601.
30 Gretz M, Plank J. Cement and Concrete Research, 2010, 41(2), 184.
31 Chuah S, Li W G, Chen S J, et al. Construction and Building Materials, 2018, 161, 519.
32 Amin M A, Kamyar H, Sajjad M, et al. Journal of Materials in Civil Engineering, 2024, 36(3), 04023600.
33 Wang X M, Zhong J. Cement and Concrete Research, 2023, 170, 107189.
34 Liu B, Wang L G, Pan G H, et al. Journal of Building Engineering, 2022, 57.
35 Zhao L, Guo X L, Liu Y Y, et al. Carbon, 2018, 127, 255.
36 Gao Y, Jing H W, Chen S J, et al. Composites Part B-Engineering, 2019, 164, 45.
37 Papanikolaou I, de Souza L R, Litina C, et al. Construction and Building Materials, 2021, 293, 123543.
38 Yan X T, Zheng D P, Yang H B, et al. Construction and Building Materials, 2020, 257, 119477.
39 Wang R Z, Sun R X, Zhao L C, et al. Journal of Building Engineering, 2023, 77, 107447.
40 Lin C Q, Wei W, Hu Y H. Journal of Physics and Chemistry of Solids, 2016, 89, 128.
41 Wang B M, Deng S. Construction and Building Materials, 2019, 228, 116720.
42 Kang X J, Zhu X H, Qian J S, et al. Construction and Building Materials, 2019, 203, 514.
43 Wang L G, Zhang S P, Zheng D P, et al. Nanomaterials, 2017, 7(12), 429.
44 Zheng K, Guo Z H, Cui N, et al. Ceramics-Silikaty, 2020, 64(4), 460.
45 Wang L, Li Q L, Song J W, et al. Powder Technology, 2021, 386, 428.
46 Wang Q, Li S Y, Pan S, et al. Construction and Building Materials, 2019, 198, 106.
47 Li W G, Li X Y, Chen S J, et al. Construction and Building Materials, 2017, 136, 506.
48 Chintalapudi K, Pannem R M R. Journal of Building Engineering, 2020, 32, 101551.
49 Xu G, Du S, He J L, et al. Carbon, 2019, 148, 141.
50 Xu Y D, Li B, Zeng J Q, et al. Ceramics-Silikaty, 2020, 64(3), 310.
51 Meng S Q, Ouyang X W, Fu J Y, et al. Nanotechnology Reviews, 2021, 10(1), 768.
52 Wang Y H, Yang J W, Ouyang D. Materials, 2019, 12(22), 3753.
53 Zhao L, Guo X L, Ge C, et al. Composites Part B-Engineering, 2017, 113, 308.
54 Ho V D, Ng C T, Ozbakkaloglu T, et al. RSC Advances, 2020, 10(70), 42777.
55 Gholampour A, Valizadeh M K, Tran D H, et al. RSC Advances, 2017, 7(87), 55148.
56 Long W J, Wei J J, Xing F, et al. Cement and Concrete Composites, 2018, 93, 127.
57 Wang B M, Jiang R S, Wu Z L. Nanomaterials, 2016, 6(11), 200.
58 Liu J T, Li Q H, Xu S L. Journal of Materials in Civil Engineering, 2019, 31(4), 04019014.
59 Lu Z Y, Li X Y, Hanif A, et al. Construction and Building Materials, 2017, 152, 232.
60 Fonseka I, Mohotti D, Wijesooriya K, et al. Construction and Building Materials, 2023, 404, 133280.
61 Lv S H, Ma Y J, Qiu C C, et al. Magazine of Concrete Research, 2013, 65(20), 1246.
62 Wang M, Wang R M, Yao H, et al. RSC Advances, 2016, 6(68), 63365.
63 Wang M, Wang R M, Yao H, et al. Construction and Building Materials, 2016, 126, 730.
64 Gao Y B, Luo J L, Zhang J G, et al. Nanotechnology Reviews, 2022, 11(1), 1778.
65 Naseem Z, Shamsaei E, Sagoe-Crentsil K, et al. Cement and Concrete Research, 2022, 158, 106843.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 张龙, 姚旭文, 车春霞, 秦智, 李国洲, 韩迎红, 杨博. Janus粒子增强PP/PMMA共混聚合物材料的力学和热稳定性能的研究[J]. 材料导报, 2025, 39(9): 24010255-8.
[8] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[9] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[10] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[11] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[12] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[13] 刘奎生, 崔勇, 于晓, 栾海涛, 宋奇达, 陈佳俊, 马子翔, 房奎圳. 恒湿与变湿养护条件下MgO膨胀剂对水泥砂浆膨胀性能的影响分析[J]. 材料导报, 2025, 39(7): 24020085-7.
[14] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[15] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed