Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24010255-8    https://doi.org/10.11896/cldb.24010255
  高分子与聚合物基复合材料 |
Janus粒子增强PP/PMMA共混聚合物材料的力学和热稳定性能的研究
张龙1,2,*, 姚旭文1,2, 车春霞3, 秦智1,2, 李国洲1,2, 韩迎红3, 杨博3
1 兰州理工大学材料科学与工程学院,兰州 730050
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
3 中国石油石油化工研究院兰州化工研究中心,兰州 730060
Study on Mechanical Properties and Thermal Stability of Janus Nanoparticles Reinforced PP/PMMA Polymer Blends
ZHANG Long1,2,*, YAO Xuwen1,2, CHE Chunxia3, QIN Zhi1,2, LI Guozhou1,2, HAN Yinghong3, YANG Bo3
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advanced Processing and Reuse of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
3 Lanzhou Chemical Research Center, PetroChina Research Institute of Petrochemical Engineering, Lanzhou 730060, China
下载:  全 文 ( PDF ) ( 41751KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚丙烯(PP)/聚甲基丙烯酸甲酯(PMMA)复合材料具有良好的力学性能和耐热性,但PP与PMMA相容性较差,导致材料力学性能和热稳定性受限。本工作采用乳液聚合法制备了尺寸约118 nm的聚苯乙烯共聚甲基丙烯酸甲酯/聚苯乙烯(P(St-co-MMA)/PS) Janus不对称乳胶纳米粒子(P(St-co-MMA) Janus NPs),将其以不同比例添加到PP/10% PMMA和PP/30% PMMA体系中,经熔融共混、注塑成型技术得到PP/PMMA/P-(St-co-MMA) Janus NPs复合材料,并进行了相关表征分析。结果表明,引入的P(St-co-MMA) Janus NPs分散在PP/PMMA复合材料中的两相界面处,其可显著改善复合材料的力学性能和热稳定性能。PP/10% PMMA/0.9% P(St-co-MMA) Janus NPs相比PP/10% PMMA,冲击强度和拉伸强度分别提高15.53%和14.03%;PP/30% PMMA/0.9% P(St-co-MMA) Janus NPs相比PP/30% PMMA,冲击强度和拉伸强度分别提高37.09%和32.35%,且热失重5%和50%对应的温度(T5T50)分别升高39.51%和33.37%。P(St-co-MMA) Janus纳米粒子对PP/PMMA复合材料的增强作用归因于其能够阻碍相分离、增强界面结合等。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张龙
姚旭文
车春霞
秦智
李国洲
韩迎红
杨博
关键词:  Janus纳米粒子  聚合物共混  增容剂  相界面    
Abstract: Polypropylene/poly(methyl methacrylate) (PP/PMMA) composites have good mechanical properties and heat resistance, but poor compatibility between PP and PMMA results in limited mechanical properties and thermal stability. In this study, via emulsion polymerization, the poly(styrene-co-methyl methacrylate)/polystyrene (P(St-co-MMA)/PS) Janus asymmetric latex nanoparticles (P(St-co-MMA) Janus NPs) with a size of about 118 nm were prepared, which were then introduced with different ratios into PP/10wt% PMMA and PP/30wt% PMMA systems to fabricate PP/PMMA/P(St-co-MMA) Janus NPs polymer blends using the techniques of melt blending and injection molding. Relevant analytical characterization was carried out, which indicated the dispersion of Janus nanoparticles introduced at the PP-PMMA interface, and as a consequence, the significant improvement in mechanical properties and thermal stability of the composites. There had been found, 15.53% and 14.03% increments for PP/10wt% PMMA/0.9wt% P(St-co-MMA) Janus NPs composite and 37.09% and 32.35% ones for PP/30wt% PMMA/0.9wt% P(St-co-MMA) Janus NPs composite in impact and tensile strengths, respectively, as well as 39.51% and 33.37% rises at T5 and T50 (temperatures at 5% and 50% thermogravimetric weight losses) in PP/30wt% PMMA/0.9wt% P(St-co-MMA) Janus NPs composite, respectively, compared to their corresponding PP/PMMA analogues without Janus nanoparticles (PP/10wt% PMMA and PP/30wt% PMMA). The enhancement of P(St-co-MMA) Janus nanoparticles to mechanical properties and thermal stability of PP/PMMA polymer blends can be attributed to their capability of blocking phase separation and strengthening interfacial bonding.
Key words:  Janus nanoparticle    polymer blend    compatibilizer    phase interface
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TB332  
基金资助: 国家自然科学基金(22066015);甘肃省重大科技专项(22ZD6GA008)
通讯作者:  *张龙,博士,兰州理工大学副教授,主要从事高分子微/纳米结构的设计与应用研究。zhanglong@lut.edu.cn   
引用本文:    
张龙, 姚旭文, 车春霞, 秦智, 李国洲, 韩迎红, 杨博. Janus粒子增强PP/PMMA共混聚合物材料的力学和热稳定性能的研究[J]. 材料导报, 2025, 39(9): 24010255-8.
ZHANG Long, YAO Xuwen, CHE Chunxia, QIN Zhi, LI Guozhou, HAN Yinghong, YANG Bo. Study on Mechanical Properties and Thermal Stability of Janus Nanoparticles Reinforced PP/PMMA Polymer Blends. Materials Reports, 2025, 39(9): 24010255-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010255  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24010255
1 Pawar S P, Rzeczkowski P, Pötschke P, et al. ACS Omega, 2018, 3(5), 5771.
2 Guo H, Xu T, Zhou S, et al. Composites Part B:Engineering, 2021, 212, 108716.
3 Kumar S, Mishra R K, Nandi T. Journal of Polymer Engineering, 2018, 38(4), 351.
4 Martinez L, Palessonga D, Roquefort P, et al. Aims Materials Science, 2021, 8(5), 739.
5 Qiu X, Fu C, Gu A, et al. High Performance Polymers, 2020, 32(6), 645.
6 Sharip N S, Ariffin H, Yasim-Anuar T A T, et al. Polymers, 2021, 13(3), 404.
7 Saffar A, Carreau P J, Ajji A, et al. Journal of Membrane Science, 2014, 462, 50.
8 Lin Y X, Liou Y K, Lee S L, et al. Journal of Membrane Science, 2023, 679, 121676.
9 Parpaite T, Otazaghine B, Caro A, et al. Polymer, 2016, 90, 34.
10 Seyni F I, Grady B P. Colloid and Polymer Science, 2021, 299, 585.
11 Sato T, Matsumiya Y, Watanabe H. The Journal of Chemical Physics, 2022, 157(22), 224908.
12 Yan Y, Zhang R, Liang Q, et al. Polymer, 2019, 182, 121827.
13 Zhou T, Zhou L, Liu Y X, et al. Journal of Applied Physics, 2022, 131(12), 124101.
14 Chen Z, Cui C, Jin C, et al. Macromolecular Rapid Communications, 2023, 44(10), 2200972.
15 Chen Z, Sun Y C, Wang J, et al. ACS Applied Materials & Interfaces, 2020, 12(7), 8740.
16 Zhao S, Yang H, Zhao B, et al. ACS Applied Materials & Interfaces, 2022, 14(23), 27309.
17 Lu M, Xiang S, Huang Y, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 647, 129094.
18 Hemmati F, Garmabi H, Modarress H. Polymer, 2014, 55(25), 6623.
19 Song D, Wang K, Shen J, et al. Polymers, 2020, 12(1), 106.
20 Jiang S Q. Advanced Materials Research, 2015, 1061, 30.
21 Souza A M C D, Calvao P S, Demarquette N R. Journal of Applied Polymer Science, 2013, 129(3), 1280.
22 Zhang M, Jiang C, Wu Q, et al. ACS Macro Letters, 2022, 11(5), 657.
23 Daitx T S, Jacoby C G, Ferreira C I, et al. Applied Clay Science, 2019, 182, 105291.
24 Taguet A, Cassagnau P, Lopez-Cuesta J M. Progress in Polymer Science, 2014, 39(8), 1526.
25 Liu Y N. Synthesis of functional anisotropic particlesvia control of phase separation during one-pot dispersion polymerization. Ph. D. Thesis, Beijing University of Chemical Technology, China, 2016 (in Chinese).
刘亚男. One-pot分散聚合控制相分离制备功能非对称微球. 博士学位论文, 北京化工大学, 2016.
26 Babo S, Ferreira J L, Ramos A M, et al. Polymers, 2020, 12(10), 2198.
27 Lv X, Zuo M, Zhang H, et al. RSC Advances, 2018, 8(71), 40701.
28 Yu X X. Study on preparation, structure and properties of PC/PP aIloys. Ph. D. Thesis, South China University of Technology, China, 2021 (in Chinese).
余兴兴. PC/PP合金的制备、结构与性能研究. 博士学位论文, 华南理工大学, 2021.
29 Parpaite T, Otazaghine B, Taguet A, et al. Polymers, 2014, 55(11), 2704.
30 Kozłowski S, Lipińska M, Slouf M, et al. Materials Today Communications, 2023, 37, 107393.
31 Genoyer J, Yee M, Soulestin J, et al. Journal of Rheology, 2017, 61(4), 613.
32 Guan J, Gui H, Zheng Y, et al. Macromolecular Rapid Communications, 2020, 41(19), 2000392.
33 Genoyer J, Soulestin J, Demarquette N R. Journal of Rheology, 2018, 62(3), 681.
[1] 赵涔凯, 邹杰鑫, 王旻, 李思明, 赵微, 张时林, 滕珏瑾, 王艳皎, 吴明铂, 胡涵, 李亚伟. 基于阴离子交换膜电解水的离聚物研究进展[J]. 材料导报, 2024, 38(8): 23080132-11.
[2] 李 款,潘友强,张 辉,陈李峰,张 健. 钢桥面铺装用环氧沥青相容性研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1534-1540.
[3] 黄林, 杨艳琼, 余峰, 付甲, 陈忠仁. 嵌段共聚物增容共混聚合物的相形貌及胶束迁移行为研究*[J]. 《材料导报》期刊社, 2017, 31(4): 100-104.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed