Study on Mechanical Properties and Thermal Stability of Janus Nanoparticles Reinforced PP/PMMA Polymer Blends
ZHANG Long1,2,*, YAO Xuwen1,2, CHE Chunxia3, QIN Zhi1,2, LI Guozhou1,2, HAN Yinghong3, YANG Bo3
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China 2 State Key Laboratory of Advanced Processing and Reuse of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 3 Lanzhou Chemical Research Center, PetroChina Research Institute of Petrochemical Engineering, Lanzhou 730060, China
Abstract: Polypropylene/poly(methyl methacrylate) (PP/PMMA) composites have good mechanical properties and heat resistance, but poor compatibility between PP and PMMA results in limited mechanical properties and thermal stability. In this study, via emulsion polymerization, the poly(styrene-co-methyl methacrylate)/polystyrene (P(St-co-MMA)/PS) Janus asymmetric latex nanoparticles (P(St-co-MMA) Janus NPs) with a size of about 118 nm were prepared, which were then introduced with different ratios into PP/10wt% PMMA and PP/30wt% PMMA systems to fabricate PP/PMMA/P(St-co-MMA) Janus NPs polymer blends using the techniques of melt blending and injection molding. Relevant analytical characterization was carried out, which indicated the dispersion of Janus nanoparticles introduced at the PP-PMMA interface, and as a consequence, the significant improvement in mechanical properties and thermal stability of the composites. There had been found, 15.53% and 14.03% increments for PP/10wt% PMMA/0.9wt% P(St-co-MMA) Janus NPs composite and 37.09% and 32.35% ones for PP/30wt% PMMA/0.9wt% P(St-co-MMA) Janus NPs composite in impact and tensile strengths, respectively, as well as 39.51% and 33.37% rises at T5 and T50 (temperatures at 5% and 50% thermogravimetric weight losses) in PP/30wt% PMMA/0.9wt% P(St-co-MMA) Janus NPs composite, respectively, compared to their corresponding PP/PMMA analogues without Janus nanoparticles (PP/10wt% PMMA and PP/30wt% PMMA). The enhancement of P(St-co-MMA) Janus nanoparticles to mechanical properties and thermal stability of PP/PMMA polymer blends can be attributed to their capability of blocking phase separation and strengthening interfacial bonding.
张龙, 姚旭文, 车春霞, 秦智, 李国洲, 韩迎红, 杨博. Janus粒子增强PP/PMMA共混聚合物材料的力学和热稳定性能的研究[J]. 材料导报, 2025, 39(9): 24010255-8.
ZHANG Long, YAO Xuwen, CHE Chunxia, QIN Zhi, LI Guozhou, HAN Yinghong, YANG Bo. Study on Mechanical Properties and Thermal Stability of Janus Nanoparticles Reinforced PP/PMMA Polymer Blends. Materials Reports, 2025, 39(9): 24010255-8.
1 Pawar S P, Rzeczkowski P, Pötschke P, et al. ACS Omega, 2018, 3(5), 5771. 2 Guo H, Xu T, Zhou S, et al. Composites Part B:Engineering, 2021, 212, 108716. 3 Kumar S, Mishra R K, Nandi T. Journal of Polymer Engineering, 2018, 38(4), 351. 4 Martinez L, Palessonga D, Roquefort P, et al. Aims Materials Science, 2021, 8(5), 739. 5 Qiu X, Fu C, Gu A, et al. High Performance Polymers, 2020, 32(6), 645. 6 Sharip N S, Ariffin H, Yasim-Anuar T A T, et al. Polymers, 2021, 13(3), 404. 7 Saffar A, Carreau P J, Ajji A, et al. Journal of Membrane Science, 2014, 462, 50. 8 Lin Y X, Liou Y K, Lee S L, et al. Journal of Membrane Science, 2023, 679, 121676. 9 Parpaite T, Otazaghine B, Caro A, et al. Polymer, 2016, 90, 34. 10 Seyni F I, Grady B P. Colloid and Polymer Science, 2021, 299, 585. 11 Sato T, Matsumiya Y, Watanabe H. The Journal of Chemical Physics, 2022, 157(22), 224908. 12 Yan Y, Zhang R, Liang Q, et al. Polymer, 2019, 182, 121827. 13 Zhou T, Zhou L, Liu Y X, et al. Journal of Applied Physics, 2022, 131(12), 124101. 14 Chen Z, Cui C, Jin C, et al. Macromolecular Rapid Communications, 2023, 44(10), 2200972. 15 Chen Z, Sun Y C, Wang J, et al. ACS Applied Materials & Interfaces, 2020, 12(7), 8740. 16 Zhao S, Yang H, Zhao B, et al. ACS Applied Materials & Interfaces, 2022, 14(23), 27309. 17 Lu M, Xiang S, Huang Y, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 647, 129094. 18 Hemmati F, Garmabi H, Modarress H. Polymer, 2014, 55(25), 6623. 19 Song D, Wang K, Shen J, et al. Polymers, 2020, 12(1), 106. 20 Jiang S Q. Advanced Materials Research, 2015, 1061, 30. 21 Souza A M C D, Calvao P S, Demarquette N R. Journal of Applied Polymer Science, 2013, 129(3), 1280. 22 Zhang M, Jiang C, Wu Q, et al. ACS Macro Letters, 2022, 11(5), 657. 23 Daitx T S, Jacoby C G, Ferreira C I, et al. Applied Clay Science, 2019, 182, 105291. 24 Taguet A, Cassagnau P, Lopez-Cuesta J M. Progress in Polymer Science, 2014, 39(8), 1526. 25 Liu Y N. Synthesis of functional anisotropic particlesvia control of phase separation during one-pot dispersion polymerization. Ph. D. Thesis, Beijing University of Chemical Technology, China, 2016 (in Chinese). 刘亚男. One-pot分散聚合控制相分离制备功能非对称微球. 博士学位论文, 北京化工大学, 2016. 26 Babo S, Ferreira J L, Ramos A M, et al. Polymers, 2020, 12(10), 2198. 27 Lv X, Zuo M, Zhang H, et al. RSC Advances, 2018, 8(71), 40701. 28 Yu X X. Study on preparation, structure and properties of PC/PP aIloys. Ph. D. Thesis, South China University of Technology, China, 2021 (in Chinese). 余兴兴. PC/PP合金的制备、结构与性能研究. 博士学位论文, 华南理工大学, 2021. 29 Parpaite T, Otazaghine B, Taguet A, et al. Polymers, 2014, 55(11), 2704. 30 Kozłowski S, Lipińska M, Slouf M, et al. Materials Today Communications, 2023, 37, 107393. 31 Genoyer J, Yee M, Soulestin J, et al. Journal of Rheology, 2017, 61(4), 613. 32 Guan J, Gui H, Zheng Y, et al. Macromolecular Rapid Communications, 2020, 41(19), 2000392. 33 Genoyer J, Soulestin J, Demarquette N R. Journal of Rheology, 2018, 62(3), 681.