Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24040169-9    https://doi.org/10.11896/cldb.24040169
  无机非金属及其复合材料 |
硫族半导体催化剂用于高效光催化CO2还原的研究进展
于慧敏, 郭少红*, 贾美林, 贾晶春, 常迎
内蒙古师范大学化学与环境科学学院,呼和浩特 010000
Progress on Efficient Photocatalytic Reduction of CO2 Using Sulfide Semiconductor Catalysts
YU Huimin, GUO Shaohong*, JIA Meilin, JIA Jingchun, CHANG Ying
College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010000, China
下载:  全 文 ( PDF ) ( 17035KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 化石燃料的持续消耗和二氧化碳的过量排放造成严重的能源危机和环境问题。因此,开发清洁能源是缓解以上两个问题的重要方法之一。光催化CO2还原是以清洁的太阳光为能量来源,在催化剂的作用下将温室气体CO2高效还原为CO、CH4和CH3OH等高附加值的化学产品,因此,这是一种可持续碳循环的“绿色”技术。硫族半导体材料具有合适的带隙和宽的光响应范围的优势,本文从硫族半导体的简介和分类、光催化CO2还原机理以及提高半导体催化活性的方法三个方面展开论述,总结了硫化物半导体催化剂近几年在光催化还原CO2中取得的研究进展。本综述将为解决金属硫化物在光催化CO2还原中的相关挑战以及未来开发新型优异性能的复合材料提供研究思路和想法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于慧敏
郭少红
贾美林
贾晶春
常迎
关键词:  二氧化碳还原  光催化  硫族半导体  清洁能源    
Abstract: The continuous consumption of fossil fuels and excessive emission of carbon dioxide have caused severe energy crises and environmental problems. Therefore, the development of clean energy is one of the important methods to alleviate these two issues. Using clean solar energy as a source, photocatalytic CO2 reduction efficiently converts greenhouse gas CO2 into high-value chemical products such as CO, CH4, and CH3OH under the action of catalysts. Thus, sulfide semiconductor materials are a sustainable “green” technology for carbon cycling due to their suitable band gaps and wide range of light response. This review discusses sulfide semiconductors in terms of introduction and classification, photocatalytic CO2 reduction mechanism, and methods for improving catalytic activity of semiconductors on recent advancements made by sulfide semiconductor catalysts. This review will provide research ideas for addressing challenges related to metal sulfides in photocatalytic CO2 reduction and the future development of novel composite materials with excellent performance.
Key words:  CO2 reduction    photocatalysis    sulfide semiconductor    clean energy
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  X701  
  O643.36  
基金资助: 内蒙古自然科学基金(2021BS02019);内蒙古师范大学基本科研业务费专项资金资助(2023JBQN045)
通讯作者:  *郭少红,讲师、博士。长期从事功能材料制备及光催化性能研究。20200043@imnu.edu.cn   
作者简介:  于慧敏,内蒙古师范大学硕士研究生。在贾美林教授和郭少红老师的指导下进行研究,目前主要从事光催化CO2还原性能的研究。
引用本文:    
于慧敏, 郭少红, 贾美林, 贾晶春, 常迎. 硫族半导体催化剂用于高效光催化CO2还原的研究进展[J]. 材料导报, 2025, 39(10): 24040169-9.
YU Huimin, GUO Shaohong, JIA Meilin, JIA Jingchun, CHANG Ying. Progress on Efficient Photocatalytic Reduction of CO2 Using Sulfide Semiconductor Catalysts. Materials Reports, 2025, 39(10): 24040169-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040169  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24040169
1 Kleinen T, Gromov S, Steil B, et al. Environmental Research Letters, 2021, 16 (11), 119502.
2 Kim S M, Abdala P M, Broda M, et al. ACS Catalysis, 2018, 8 (4), 2815.
3 Cai M, Wu Z, Li Z, et al. Nature Energy, 2021, 6 (8), 807.
4 Boyd P G, Chidambaram A, García-Díez E, et al. Nature, 2019, 576 (7786), 253.
5 Huang W, Li Z, Wu C, et al. Journal of Materials Science & Technology, 2022, 120, 89.
6 Li X, Sun Y, Xu J, et al. Nature Energy, 2019, 4 (8), 690.
7 Nie Y, Bo T, Zhou W, et al. Journal of Materials Chemistry A, 2023, 11 (4), 1793.
8 Han X, Lu B, Huang X, et al. Applied Catalysis B:Environmental, 2022, 316, 121587.
9 Wu X, Zhang W, Li J, et al. Angewandte Chemie International Edition, 2022, 62 (6), 202213124.
10 Huang Y, Dai K, Zhang J, et al. Chinese Journal of Catalysis, 2022, 43 (10), 2539.
11 Wang L, Cheng B, Zhang L, et al. Small, 2021, 17 (41), 2103447.
12 Fang R, Yang Z, Sun J, et al. Journal of Materials Chemistry A, 2024, 12 (6), 3398.
13 Nikolaou V, Govind C, Balanikas, E, et al. Angewandte Chemie International Edition, 2024, 63 (13), 202318299.
14 Inoue T, Fujishima A, Konishi S, et al. Nature, 1979, 277, 637.
15 Jiang Y, Ning H, Tian C, et al. Applied Catalysis B:Environmental, 2018, 229, 1.
16 Du M, Qiu B, Zhu Q, et al. Catalysis Today, 2019, 327, 340.
17 Liu Y, Yang W, Chen Q, et al. Journal of the American Chemical Society, 2022, 144 (6), 2705.
18 Qiu B, Cai L, Zhang N, et al. Advanced Science, 2020, 7 (17), 1903568.
19 Zhu Q, Qiu B, Duan H, et al. Applied Catalysis B:Environmental, 2019, 259, 118078.
20 Zhu Q, Xu Z, Qiu B, et al. Small, 2021, 17 (40), 2101070.
21 Wang J, Lin S, Tian N, et al. Advanced Functional Materials, 2020, 31 (9), 2008008.
22 Wu X, Xie S, Zhang H, et al. Advanced Materials, 2021, 33 (50), 2007129.
23 Meryem S S, Nasreen S, Siddique M, et al. Reviews in Chemical Engineering, 2018, 34 (3), 409.
24 Fang R, Yang Z, Wang Z, et al. Fuel, 2024, 367, 131514.
25 Chang X, Wang T, Gong J. Energy & Environmental Science, 2016, 9 (7), 2177.
26 Song X, Shan X, Xue H, et al. ACS Applied Nano Materials, DOI:10.1021/acsanm.4c00598.
27 Zhao W, Mo W, Zhang Y, et al. Nano Research, DOI:10.1007/s12274-024-6514-8.
28 Kar P, Farsinezhad S, Mahdi N, et al. Nano Research, 2016, 9 (11), 3478.
29 Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Angewandte Chemie International Edition, 2013, 52 (29), 7372.
30 Kar P, Farsinezhad S, Zhang X, et al. Nanoscale, 2014, 6 (23), 14305.
31 Hong J, Zhang W, Ren J, et al. Analytical Methods, 2013, 5 (5), 1086.
32 Zheng Z, Zu X, Zhang Y, et al. Materials Today Physics, 2020, 15, 100262.
33 Zhang G, Wang Z, Wu J. Nanoscale, 2021, 13 (8), 4359.
34 Wageh S, Al-Ghamdi A A, Jafer R, et al. Chinese Journal of Catalysis, 2021, 42 (5), 667.
35 Huang Q S, Li Q, Chu C, et al. Chemical Engineering Journal, 2024, 482 149155.
36 Ma Y, Zhang Y, Xie G, et al. ACS Catalysis, 2024, 14 (3), 1468.
37 Liu S, Guo Z, Yang Y, et al. Environmental Chemistry Letters, 2024, 22 (2), 463.
38 Lin Q, Zhao J, Zhang P, et al. Carbon Energy, 2024, 6 (1), e435.
39 Bao L, Jia Y, Ren X, et al. Journal of Materials Science & Technology, 2024, 199, 75.
40 Pang H, Meng X, Song H, et al. Applied Catalysis B:Environmental, 2019, 244, 1013.
41 Li P, He T. Applied Catalysis B:Environmental, 2018, 238, 518.
42 Zhang G, Zhu X, Chen D, et al. Environmental Science:Nano, 2020, 7 (2), 676.
43 Meng X, Zuo G, Zong P, et al. Applied Catalysis B:Environmental, 2018, 237, 68.
44 Ma X, Li D, Xie J, et al. Solar RRL, 2023, 7 (7), 2201093.
45 Luo W, Li A, Yang B, et al. ACS Applied Materials & Interfaces, 2023, 15 (12), 15387.
46 Wang S, Wang Y, Zhang S L, et al. Advanced Materials, 2019, 31 (41) 1970291.
47 Kang J, Qiu X, Hu Q, et al. Nature Catalysis, 2021, 4 (12), 1050.
48 Xia Y, Sayed M, Zhang L, et al. Chem Catalysis, 2021, 1 (6), 1173.
49 Si S, Shou H, Mao Y, et al. Angewandte Chemie International Edition, 2022, 61 (41), 202209446.
50 Li L, Ma D, Xu Q, et al. Chemical Engineering Journal, 2022, 437, 135153.
51 Song M, Song X, Liu X, et al. Chinese Journal of Catalysis, 2023, 51, 180.
52 Song Y, Wang Y, Hu C, et al. ACS Applied Materials & Interfaces, 2023, 15 (25), 30199.
53 Qi M Y, Lin Q, Tang Z R, et al. Applied Catalysis B:Environmental, 2022, 307, 121158.
54 Jiang N, Li X, Guo H, et al. Chemical Engineering Journal, 2021, 412, 128627.
55 Wang J, Xia T, Wang L, et al. Angewandte Chemie International Edition, 2018, 57 (50), 16447.
56 Kuehnel M F, Orchard K L, Dalle K E, et al. Journal of the American Chemical Society, 2017, 139 (21), 7217.
57 Wang F, Hou T, Zhao X, et al. Advanced Materials, 2021, 33 (35), 2102690.
58 Zhou X, Fang Y, Cai X, et al. ACS Applied Materials & Interfaces, 2020, 12 (18), 20579.
59 Xiang D, Hao X, Jin Z. ACS Applied Nano Materials, 2021, 4 (12), 13848.
60 Xu M, Sun C, Zhao X, et al. Applied Surface Science, 2022, 576, 151792.
61 Wu S, Pang H, Zhou W, et al. Nanoscale, 2020, 12 (16), 8693.
62 Qin J, Zhao W, Hu X, et al. ACS Applied Materials & Interfaces, 2021, 13 (6), 7127.
63 Liu Q, Li X, He Q, et al. Small, 2015, 11 (41), 5556.
64 Zhao Y, Cai W, Shi Y, et al. ACS Sustainable Chemistry & Engineering, 2020, 8 (33), 12603.
65 Yu F, Jing X, Wang Y, et al. Angewandte Chemie International Edition, 2021, 60 (47), 24849.
66 Gao X J, Cao J M, Yang M M, et al. Journal of Solid State Chemistry, 2023, 322, 123931.
67 Yang X, Lan X, Zhang Y, et al. Applied Catalysis B:Environmental, 2023, 325, 122393.
68 Singh S, Punia R, Pant K K, et al. Chemical Engineering Journal, 2022, 433, 132709.
69 Ben Abdallah H, Ouerghui W. Optical and Quantum Electronics, 2021, 54, 1.
70 Guo R T, Liu X y, Qin H, et al. Applied Surface Science, 2020, 500, 144059.
71 Shan B F, Deng J, Zhao Z Y. Physica Status Solidi (B), 2021, 258 (12), 2100268.
72 Zhao B, Song D, Ding Y, et al. Electrochimica Acta, 2020, 354, 136730.
73 Guo S Q, Yang B, Hu Z, et al. Nano Research, 2022, 16 (2), 2102.
74 Zhu B, Tan H, Fan J, et al. Journal of Materiomics, 2021, 7 (5), 988.
75 You F, Zhou Y, Li D, et al. Journal of Colloid and Interface Science, 2023, 629, 871.
76 Wu C Y, Lee C J, Yu Y H, et al. ACS Applied Materials & Interfaces, 2021, 13 (4), 4984.
[1] 阳东胤, 赵媛, 燕红. 碳量子点的制备、性质及在光催化领域中的应用研究进展[J]. 材料导报, 2025, 39(8): 24060102-13.
[2] 赵娣, 刘洪燕, 王树军, 孙欣语, 张紫璇, 齐学宇, 刘子帆. Z型异质结复合薄膜UIO-66-NH2/Ag/Ag3PO4/Ni的可见光催化性能及机理[J]. 材料导报, 2025, 39(8): 24030178-6.
[3] 杨明, 孙杰, 王金泽, 崔占朋, 吴敏, 杜伟. 金属有机框架及碳基材料在室内有机污染物控制中的研究进展[J]. 材料导报, 2025, 39(4): 24010153-8.
[4] 孔德茹, 刘靖, 杨晓林, 孙冬兰, 张进康. 溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究[J]. 材料导报, 2025, 39(1): 23100131-7.
[5] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[6] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[7] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[8] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[9] 朱艳, 刘海龙, 贾仕奎, 李云峰, 首浩. Fe3O4/g-C3N4复合异质结的构建及紫外光降解罗丹明B[J]. 材料导报, 2024, 38(23): 23080020-7.
[10] 徐杨, 刘成宝, 郑磊之, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. 高结晶度g-C3N4在光催化领域的研究进展[J]. 材料导报, 2024, 38(21): 23060180-13.
[11] 刘京津, 赵华, 李会鹏, 蔡天凤. 氧磷共掺杂二维石墨相氮化碳的制备及光催化性能[J]. 材料导报, 2024, 38(21): 23070238-7.
[12] 莫日格吉乐, 包莫日根, 白璐, 谢兵, 于晓丽, 曹鸿璋, 赵丹蕾, 赵斯琴. CeO2光催化原理及改性研究进展[J]. 材料导报, 2024, 38(21): 23080150-6.
[13] 陈俊林, 常春. 具有三维花球状结构的钼酸铋在模拟太阳光照射下降解双氯芬酸钠[J]. 材料导报, 2024, 38(20): 23050078-9.
[14] 刘睿琦, 孙善富, 程鹏飞, 王莹麟, 郝熙冬. 光/电催化废塑料升级再造高附加值化学品研究进展[J]. 材料导报, 2024, 38(20): 23060226-7.
[15] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed