Abstract: The continuous consumption of fossil fuels and excessive emission of carbon dioxide have caused severe energy crises and environmental problems. Therefore, the development of clean energy is one of the important methods to alleviate these two issues. Using clean solar energy as a source, photocatalytic CO2 reduction efficiently converts greenhouse gas CO2 into high-value chemical products such as CO, CH4, and CH3OH under the action of catalysts. Thus, sulfide semiconductor materials are a sustainable “green” technology for carbon cycling due to their suitable band gaps and wide range of light response. This review discusses sulfide semiconductors in terms of introduction and classification, photocatalytic CO2 reduction mechanism, and methods for improving catalytic activity of semiconductors on recent advancements made by sulfide semiconductor catalysts. This review will provide research ideas for addressing challenges related to metal sulfides in photocatalytic CO2 reduction and the future development of novel composite materials with excellent performance.
1 Kleinen T, Gromov S, Steil B, et al. Environmental Research Letters, 2021, 16 (11), 119502. 2 Kim S M, Abdala P M, Broda M, et al. ACS Catalysis, 2018, 8 (4), 2815. 3 Cai M, Wu Z, Li Z, et al. Nature Energy, 2021, 6 (8), 807. 4 Boyd P G, Chidambaram A, García-Díez E, et al. Nature, 2019, 576 (7786), 253. 5 Huang W, Li Z, Wu C, et al. Journal of Materials Science & Technology, 2022, 120, 89. 6 Li X, Sun Y, Xu J, et al. Nature Energy, 2019, 4 (8), 690. 7 Nie Y, Bo T, Zhou W, et al. Journal of Materials Chemistry A, 2023, 11 (4), 1793. 8 Han X, Lu B, Huang X, et al. Applied Catalysis B:Environmental, 2022, 316, 121587. 9 Wu X, Zhang W, Li J, et al. Angewandte Chemie International Edition, 2022, 62 (6), 202213124. 10 Huang Y, Dai K, Zhang J, et al. Chinese Journal of Catalysis, 2022, 43 (10), 2539. 11 Wang L, Cheng B, Zhang L, et al. Small, 2021, 17 (41), 2103447. 12 Fang R, Yang Z, Sun J, et al. Journal of Materials Chemistry A, 2024, 12 (6), 3398. 13 Nikolaou V, Govind C, Balanikas, E, et al. Angewandte Chemie International Edition, 2024, 63 (13), 202318299. 14 Inoue T, Fujishima A, Konishi S, et al. Nature, 1979, 277, 637. 15 Jiang Y, Ning H, Tian C, et al. Applied Catalysis B:Environmental, 2018, 229, 1. 16 Du M, Qiu B, Zhu Q, et al. Catalysis Today, 2019, 327, 340. 17 Liu Y, Yang W, Chen Q, et al. Journal of the American Chemical Society, 2022, 144 (6), 2705. 18 Qiu B, Cai L, Zhang N, et al. Advanced Science, 2020, 7 (17), 1903568. 19 Zhu Q, Qiu B, Duan H, et al. Applied Catalysis B:Environmental, 2019, 259, 118078. 20 Zhu Q, Xu Z, Qiu B, et al. Small, 2021, 17 (40), 2101070. 21 Wang J, Lin S, Tian N, et al. Advanced Functional Materials, 2020, 31 (9), 2008008. 22 Wu X, Xie S, Zhang H, et al. Advanced Materials, 2021, 33 (50), 2007129. 23 Meryem S S, Nasreen S, Siddique M, et al. Reviews in Chemical Engineering, 2018, 34 (3), 409. 24 Fang R, Yang Z, Wang Z, et al. Fuel, 2024, 367, 131514. 25 Chang X, Wang T, Gong J. Energy & Environmental Science, 2016, 9 (7), 2177. 26 Song X, Shan X, Xue H, et al. ACS Applied Nano Materials, DOI:10.1021/acsanm.4c00598. 27 Zhao W, Mo W, Zhang Y, et al. Nano Research, DOI:10.1007/s12274-024-6514-8. 28 Kar P, Farsinezhad S, Mahdi N, et al. Nano Research, 2016, 9 (11), 3478. 29 Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Angewandte Chemie International Edition, 2013, 52 (29), 7372. 30 Kar P, Farsinezhad S, Zhang X, et al. Nanoscale, 2014, 6 (23), 14305. 31 Hong J, Zhang W, Ren J, et al. Analytical Methods, 2013, 5 (5), 1086. 32 Zheng Z, Zu X, Zhang Y, et al. Materials Today Physics, 2020, 15, 100262. 33 Zhang G, Wang Z, Wu J. Nanoscale, 2021, 13 (8), 4359. 34 Wageh S, Al-Ghamdi A A, Jafer R, et al. Chinese Journal of Catalysis, 2021, 42 (5), 667. 35 Huang Q S, Li Q, Chu C, et al. Chemical Engineering Journal, 2024, 482 149155. 36 Ma Y, Zhang Y, Xie G, et al. ACS Catalysis, 2024, 14 (3), 1468. 37 Liu S, Guo Z, Yang Y, et al. Environmental Chemistry Letters, 2024, 22 (2), 463. 38 Lin Q, Zhao J, Zhang P, et al. Carbon Energy, 2024, 6 (1), e435. 39 Bao L, Jia Y, Ren X, et al. Journal of Materials Science & Technology, 2024, 199, 75. 40 Pang H, Meng X, Song H, et al. Applied Catalysis B:Environmental, 2019, 244, 1013. 41 Li P, He T. Applied Catalysis B:Environmental, 2018, 238, 518. 42 Zhang G, Zhu X, Chen D, et al. Environmental Science:Nano, 2020, 7 (2), 676. 43 Meng X, Zuo G, Zong P, et al. Applied Catalysis B:Environmental, 2018, 237, 68. 44 Ma X, Li D, Xie J, et al. Solar RRL, 2023, 7 (7), 2201093. 45 Luo W, Li A, Yang B, et al. ACS Applied Materials & Interfaces, 2023, 15 (12), 15387. 46 Wang S, Wang Y, Zhang S L, et al. Advanced Materials, 2019, 31 (41) 1970291. 47 Kang J, Qiu X, Hu Q, et al. Nature Catalysis, 2021, 4 (12), 1050. 48 Xia Y, Sayed M, Zhang L, et al. Chem Catalysis, 2021, 1 (6), 1173. 49 Si S, Shou H, Mao Y, et al. Angewandte Chemie International Edition, 2022, 61 (41), 202209446. 50 Li L, Ma D, Xu Q, et al. Chemical Engineering Journal, 2022, 437, 135153. 51 Song M, Song X, Liu X, et al. Chinese Journal of Catalysis, 2023, 51, 180. 52 Song Y, Wang Y, Hu C, et al. ACS Applied Materials & Interfaces, 2023, 15 (25), 30199. 53 Qi M Y, Lin Q, Tang Z R, et al. Applied Catalysis B:Environmental, 2022, 307, 121158. 54 Jiang N, Li X, Guo H, et al. Chemical Engineering Journal, 2021, 412, 128627. 55 Wang J, Xia T, Wang L, et al. Angewandte Chemie International Edition, 2018, 57 (50), 16447. 56 Kuehnel M F, Orchard K L, Dalle K E, et al. Journal of the American Chemical Society, 2017, 139 (21), 7217. 57 Wang F, Hou T, Zhao X, et al. Advanced Materials, 2021, 33 (35), 2102690. 58 Zhou X, Fang Y, Cai X, et al. ACS Applied Materials & Interfaces, 2020, 12 (18), 20579. 59 Xiang D, Hao X, Jin Z. ACS Applied Nano Materials, 2021, 4 (12), 13848. 60 Xu M, Sun C, Zhao X, et al. Applied Surface Science, 2022, 576, 151792. 61 Wu S, Pang H, Zhou W, et al. Nanoscale, 2020, 12 (16), 8693. 62 Qin J, Zhao W, Hu X, et al. ACS Applied Materials & Interfaces, 2021, 13 (6), 7127. 63 Liu Q, Li X, He Q, et al. Small, 2015, 11 (41), 5556. 64 Zhao Y, Cai W, Shi Y, et al. ACS Sustainable Chemistry & Engineering, 2020, 8 (33), 12603. 65 Yu F, Jing X, Wang Y, et al. Angewandte Chemie International Edition, 2021, 60 (47), 24849. 66 Gao X J, Cao J M, Yang M M, et al. Journal of Solid State Chemistry, 2023, 322, 123931. 67 Yang X, Lan X, Zhang Y, et al. Applied Catalysis B:Environmental, 2023, 325, 122393. 68 Singh S, Punia R, Pant K K, et al. Chemical Engineering Journal, 2022, 433, 132709. 69 Ben Abdallah H, Ouerghui W. Optical and Quantum Electronics, 2021, 54, 1. 70 Guo R T, Liu X y, Qin H, et al. Applied Surface Science, 2020, 500, 144059. 71 Shan B F, Deng J, Zhao Z Y. Physica Status Solidi (B), 2021, 258 (12), 2100268. 72 Zhao B, Song D, Ding Y, et al. Electrochimica Acta, 2020, 354, 136730. 73 Guo S Q, Yang B, Hu Z, et al. Nano Research, 2022, 16 (2), 2102. 74 Zhu B, Tan H, Fan J, et al. Journal of Materiomics, 2021, 7 (5), 988. 75 You F, Zhou Y, Li D, et al. Journal of Colloid and Interface Science, 2023, 629, 871. 76 Wu C Y, Lee C J, Yu Y H, et al. ACS Applied Materials & Interfaces, 2021, 13 (4), 4984.