Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24030178-6    https://doi.org/10.11896/cldb.24030178
  金属与金属基复合材料 |
Z型异质结复合薄膜UIO-66-NH2/Ag/Ag3PO4/Ni的可见光催化性能及机理
赵娣*, 刘洪燕, 王树军, 孙欣语, 张紫璇, 齐学宇, 刘子帆
廊坊师范学院化学与材料科学学院,河北 廊坊 065000
Photocatalytic Performance and Mechanism of Z-scheme Composite Thin Films UIO-66-NH2/Ag/Ag3PO4/Ni Under Visible Light Irradiation
ZHAO Di*, LIU Hongyan, WANG Shujun, SUN Xinyu, ZHANG Zixuan, QI Xueyu, LIU Zifan
Faculty of Chemistry and Material Science, Langfang Normal University, Langfang 065000, Hebei, China
下载:  全 文 ( PDF ) ( 22477KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 设计和合成高效光催化剂需要实现反应位点的精确调控、光诱导载流子的快速迁移以及可见光的有效吸收。本工作采用恒流电沉积法制备了UIO-66-NH2/Ag/Ag3PO4/Ni复合薄膜。UIO-66-NH2和Ag3PO4的能带结构匹配良好,同时纳米Ag作为光生载流子分离中心,形成了由Ag3PO4、Ag和UIO-66-NH2组成的Z型异质结光催化体系,有效地分离了光生电子-空穴对,保留了强氧化-还原活性位点,因而UIO-66-NH2/Ag/Ag3PO4/Ni复合薄膜在可见光下表现出优异的光催化性能。此外,光电化学测试结果表明,UIO-66-NH2/Ag/Ag3PO4/Ni复合薄膜具有更高的载流子分离速率和更低的催化还原溶解O2的反应势垒。活性物种实验结果表明,·O2-和空穴(h+)在光催化降解中起主要作用,进一步证实了系统的Z型异质结光催化降解机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵娣
刘洪燕
王树军
孙欣语
张紫璇
齐学宇
刘子帆
关键词:  UIO-66-NH2/Ag/Ag3PO4/Ni复合薄膜  Z型异质结  恒流电沉积  可见光  光催化    
Abstract: The design and synthesis of highly efficient photocatalysts require precise regulation of reaction sites, rapid migration of photo induced car-riers, and strong absorption of visible light. UIO-66-NH2/Ag/Ag3PO4/Ni composite thin film was prepared by a constant current electrodeposition method. The electronic band structure of UIO-66-NH2 and Ag3PO4 matched well. At the same time, nano Ag acted as the separation center of photogenerated charge carriers, forming a Z-scheme photocatalytic system consisting of Ag3PO4, Ag and UIO-66-NH2, which effectively separated photogenerated electron hole pairs and retained strong oxidation-reduction active sites. Therefore, UIO-66-NH2/Ag/Ag3PO4/Ni composite thin film has excellent photocatalytic performance under visible light. In addition, the photoelectrochemical test results indicated that the UIO-66-NH2/Ag/Ag3PO4/Ni composite thin film had a faster carrier separation rate and a lower catalytic reduction reaction barrier for dissolved O2. The results of active species experiments indicated that ·O2- and holes (h+) played a major role in the photocatalytic degradation, further confirming the Z-scheme photocatalytic degradation mechanism of the system.
Key words:  UIO-66-NH2/Ag/Ag3PO4/Ni composite thin film    Z-scheme heterojunction    constant current electrodeposition    visible light    photocatalysis
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  O643  
  O614  
基金资助: 河北省高等学校科学技术研究项目(QN2022137);大学生创新创业训练项目(X202310100017);河北省创新创业教育教学改革研究与实践项目(2023cxcy177)
通讯作者:  赵娣,廊坊师范学院化学与材料科学学院教授。目前主要从事光催化材料和电化学等方面的研究工作。175461122@qq.com   
引用本文:    
赵娣, 刘洪燕, 王树军, 孙欣语, 张紫璇, 齐学宇, 刘子帆. Z型异质结复合薄膜UIO-66-NH2/Ag/Ag3PO4/Ni的可见光催化性能及机理[J]. 材料导报, 2025, 39(8): 24030178-6.
ZHAO Di, LIU Hongyan, WANG Shujun, SUN Xinyu, ZHANG Zixuan, QI Xueyu, LIU Zifan. Photocatalytic Performance and Mechanism of Z-scheme Composite Thin Films UIO-66-NH2/Ag/Ag3PO4/Ni Under Visible Light Irradiation. Materials Reports, 2025, 39(8): 24030178-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030178  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24030178
1 Chen D, Cheng Y, Zhou N, et al. Journal of Cleaner Production, 2020, 268, 121725.
2 Albero J, Peng Y, García H. ACS Catalysis, 2020, 10, 5734.
3 Fajrina N, Tahir M. International Journal of Hydrogen Energy, 2019, 44 (2), 540.
4 Wang G, Chang J, Tang W, et al. Journal of Physics D: Applied Physics, 2022, 55(29), 293002.
5 Wang M, Yao H L, Zhang L L, et al. Journal of Hazardous Materials, 2020, 383, 121149.
6 Javed H M A, Hameed A, Afzaal M, et al. International Journal of Modern Physics B, 2022, 37(17), 2350162.
7 Zhao D, Chen Y, Li A, et al. Materials Chemistry and Physics, 2021, 263, 124411.
8 Li Y, Li M, Nan R, et al. Materials Chemistry and Physics, 2022, 279, 125761.
9 Ma Y, Liu F, Liu Y, et al. Chemical Engineering Journal, 2021, 414, 128802.
10 Li C, Ding G, Liu X, et al. Chemical Engineering Journal, 2022, 435, 134740.
11 Chai Y, Li L, Shen J, Zhang Y, et al. ACS Applied Energy Materials, 2022, 5, 3748.
12 Tong Z W, Yang D, Sun Y Y, et al. Physical Chemistry Chemical Physics, 2015, 17, 12199.
13 Liu J X, Wang Y F, Wang Y W, et al. Acta Physico-Chimica Sinica, 2014, 30(4), 729 (in Chinese).
刘建新, 王韵芳, 王雅文, 等. 物理化学学报, 2014, 30(4), 729.
14 Wang Z, Hu T, Dai K, et al. Chinese Journal of Catalysis, 2017, 38, 2021.
15 Liu G, Zhao X, Zhang J, et al. Dalton Transactions, 2018, 47, 6225.
16 Sha Z, Chan H S, Wu J. Journal of Hazardous Materials, 2015, 299, 132.
17 Ji P, Drake T, Murakami A, et al. Journal of the American Chemical Society, 2018, 140, 10553.
18 Zhang N, Zhang X, Gan C, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 376, 305.
19 Zhou Y C, Wang C C, Wang P, et al. Chinese Journal of Inorganic Chemistry, 2020, 36(11), 2100 (in Chinese).
周云彩, 王崇臣, 王鹏, 等. 无机化学学报, 2020, 36(11), 2100.
20 Cui S, Ye Z, Qian C, et al. Journal of Materials Science: Materials in Electronics, 2018, 29, 15138.
21 Xu X Y, Chu C, Fu H, et al. Chemical Engineering Journal, 2018, 350, 436.
22 Wang Y, Kong X, Jiang M, et al. Inorganic Chemistry Frontiers, 2020, 7, 437.
23 Zhu P, Luo D, Liu M, et al. Separation and Purification Technology, 2022, 297, 121503.
24 Zhang M F, Zhang Z M, Jia J W, et al. Nonferrous Metals Science and Engineering, 2020, 11(3), 18(in Chinese).
张梦凡, 张振民, 贾静雯, 等. 有色金属科学与工程, 2020, 11(3), 18.
25 Hu J, Chen C, Zheng Y, et al. Small, 2020, 16, 2002988.
26 Zhou X, Feng T, Gao S T, et al. Chinese Journal of Inorganic Chemistry, 2016, 32(5), 769 (in Chinese).
周欣, 冯涛, 高书涛, 等. 无机化学学报, 2016, 32(5), 769.
27 Li A C, Zhao D, Liu P P, et al. The Chinese Journal of Nonferrous Metals, 2015, 25(8), 2196 (in Chinese).
李爱昌, 赵娣, 刘盼盼, 等. 中国有色金属学报, 2015, 25(8), 2196.
28 Zhao D, Li A, Wu M, et al. Reaction Kinetics Mechanisms & Catalysis, 2018, 124, 347.
29 Ren J, Meng Y, Zhang X, et al. Separation and Purification Technology, 2022, 296, 121423.
30 Cao J, Luo B, Lin H, et al. Journal of Hazardous Materials, 2012, 217-218, 107.
31 Zheng J, Lei Z. Applied Catalysis B: Environmental, 2018, 237, 1.
32 Zhao D, Dai F C, Li A C, et al. New Journal of Chemistry, 2020, 44, 9502.
33 Katsumata H, Sakai T, Suzuki T, et al. Industrial & Engineering Che-mistry Research, 2014, 53, 8018.
34 Zhao D, Fu L, Liu H Y, et al. The Chinese Journal of Nonferrous Metals, 2021, 31(12), 3614 (in Chinese).
赵娣, 傅丽, 刘洪燕, 等. 中国有色金属学报, 2021, 31(12), 3614.
35 Zhao D, Chen Y, Liu H, et al. Functional Materials Letters, 2022, 15(2), 2250009.
[1] 阳东胤, 赵媛, 燕红. 碳量子点的制备、性质及在光催化领域中的应用研究进展[J]. 材料导报, 2025, 39(8): 24060102-13.
[2] 杨明, 孙杰, 王金泽, 崔占朋, 吴敏, 杜伟. 金属有机框架及碳基材料在室内有机污染物控制中的研究进展[J]. 材料导报, 2025, 39(4): 24010153-8.
[3] 孔德茹, 刘靖, 杨晓林, 孙冬兰, 张进康. 溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究[J]. 材料导报, 2025, 39(1): 23100131-7.
[4] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[5] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[6] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[7] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[8] 唐新德, 刘水林, 伍素云, 刘宁, 张春燕, 龚升高. Ti3+/C/N-TiO2@NGQDs纳米复合光催化剂的制备及其可见光催化性能研究[J]. 材料导报, 2024, 38(23): 23090142-6.
[9] 朱艳, 刘海龙, 贾仕奎, 李云峰, 首浩. Fe3O4/g-C3N4复合异质结的构建及紫外光降解罗丹明B[J]. 材料导报, 2024, 38(23): 23080020-7.
[10] 徐杨, 刘成宝, 郑磊之, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. 高结晶度g-C3N4在光催化领域的研究进展[J]. 材料导报, 2024, 38(21): 23060180-13.
[11] 刘京津, 赵华, 李会鹏, 蔡天凤. 氧磷共掺杂二维石墨相氮化碳的制备及光催化性能[J]. 材料导报, 2024, 38(21): 23070238-7.
[12] 莫日格吉乐, 包莫日根, 白璐, 谢兵, 于晓丽, 曹鸿璋, 赵丹蕾, 赵斯琴. CeO2光催化原理及改性研究进展[J]. 材料导报, 2024, 38(21): 23080150-6.
[13] 陈俊林, 常春. 具有三维花球状结构的钼酸铋在模拟太阳光照射下降解双氯芬酸钠[J]. 材料导报, 2024, 38(20): 23050078-9.
[14] 刘睿琦, 孙善富, 程鹏飞, 王莹麟, 郝熙冬. 光/电催化废塑料升级再造高附加值化学品研究进展[J]. 材料导报, 2024, 38(20): 23060226-7.
[15] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed