Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24030173-8    https://doi.org/10.11896/cldb.24030173
  金属与金属基复合材料 |
基于二维图像和三维模型的泡沫铝结构表征的差异
陈新1, 罗洪杰1,*, 王理1, 吴林丽1, 栢天舒2, 廉德良2
1 东北大学冶金学院材料先进制备技术教育部工程研究中心,沈阳 110819
2 中国科学院金属研究所分析测试中心,沈阳 110179
Differences in the Characterization of Aluminum Foam Structures Based on 2D Images and 3D Models
CHEN Xin1, LUO Hongjie1,*, WANG Li1, WU Linli1, BAI Tianshu2, LIAN Deliang2
1 Engineering Research Center of Ministry of Education for Advance Materials Preparation Technology, School of Metallurgy of Northeastern University, Shenyang 110819, China
2 Analysis and Testing Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110179, China
下载:  全 文 ( PDF ) ( 45787KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 泡沫铝具有轻质、高能吸收等优点,在汽车工业、航空航天、建筑行业及环境保护等领域具有广阔的应用前景。泡沫金属细观结构的随机性对其压缩力学特性(特别是变形和失效)有深远的影响,因此,定量化表征泡沫铝的结构至关重要。本工作分别使用便携式桌面扫描仪和计算机层析成像(CT)对闭孔泡沫铝的微观结构进行表征,从二维和三维角度定量探讨了泡沫铝的孔径、孔隙率、壁厚等结构参数,比较了二维图像和三维模型表征泡沫铝结构参数的差异,以及泡沫铝整体和局部结构参数的差异。研究发现,二维图像测得的结构参数除孔隙率与圆度外基本与三维模型一致;三维模型各个方向的截面的结构参数略有差异,但与三维模型整体的结构参数比较接近。总体而言,三维模型的测量结果更准确,二维图像测量在时间和成本方面更具优势。本工作能为多孔材料尤其是大孔材料结构参数的定量化表征提供有益的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈新
罗洪杰
王理
吴林丽
栢天舒
廉德良
关键词:  闭孔泡沫铝  二维结构表征  CT图像  三维重构模型  结构参数    
Abstract: Aluminum foam, with the advantages of light weight and high energy absorption, has a broad application prospect in the automotive industry, aerospace, construction industry and environmental protection. The randomness of the mesostructure of metal foam has a profound impact on its compressive mechanical properties, especially deformation and failure, so it is important to quantitatively characterize the structure of aluminum foam. In this work, a portable desktop scanner and computed tomography (CT) were used to characterize the microstructure of closed-cell aluminum foam, and the structural parameters such as pore size, porosity, and wall thickness in aluminum foam were quantitatively discussed from two-dimensional and three-dimensional perspectives, and the differences in structural parameters of aluminum foam were compared between two-dimensional images and three-dimensional models, as well as the differences between global and local structural parameters of aluminum foam. The results showed that the structural parameters measured by 2D images are basically consistent with which by 3D model except for porosity and roundness. The structural parameters of the cross-sections in each direction measured by 3D model are slightly different, but they are closer to the specimen. Overall, the measurement results of 3D model are more accurate, while 2D image measurement is more advantageous in terms of time and cost. This work provides a useful reference for the quantitative characterization of the structural parameters of porous mate-rials, especially macroporous materials.
Key words:  closed-cell aluminum foam    2D structural characterization    CT image    3D reconstruction model    structure parameter
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TG146  
基金资助: 国家自然科学基金面上项目(51874093);内蒙古2020科技创新引导项目(NMGKJCX202007);内蒙古2018“草原英才”引领项目;徐州市2022科技成果转化项目(KC22450)
通讯作者:  罗洪杰,博士,东北大学冶金学院教授、博士研究生导师。目前主要从事轻金属泡沫/多孔材料(Al、Mg、Si、Ti)及其复合材料(夹芯板、异形件)的制备、性能及应用研究。luohj@smm.neu.edu.cn   
作者简介:  陈新,东北大学冶金学院硕士研究生,在罗洪杰教授的指导下进行研究。目前主要研究领域为泡沫铝结构的定量化表征及中断压缩过程的变形机制。
引用本文:    
陈新, 罗洪杰, 王理, 吴林丽, 栢天舒, 廉德良. 基于二维图像和三维模型的泡沫铝结构表征的差异[J]. 材料导报, 2025, 39(8): 24030173-8.
CHEN Xin, LUO Hongjie, WANG Li, WU Linli, BAI Tianshu, LIAN Deliang. Differences in the Characterization of Aluminum Foam Structures Based on 2D Images and 3D Models. Materials Reports, 2025, 39(8): 24030173-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030173  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24030173
1 Rodinger T, Ć orić D, Alar Ž. Metals, 2023, 13(6), 1146.
2 Gibson L J, Ashby M F. Cellular solids:structure and properties, Cambridge University Press, UK, 1997, pp. 316.
3 Yong-phil, Chunggil G K, Sangmae L. Journal of Materials Processing Technology, 2009, 209(1), 435.
4 Zou Y, He D P, Jiang J Q. Science in China Series B:Chemistry, 2004, 47, 407.
5 Lázaro J, Solórzano E, Rodríguez-Pérez M A. Advanced Engineering Materials, 2017, 19(11), 1600496.
6 Rouquerol J, Baron G, Denoyel R, et al. Pure and Applied Chemistry, 2011, 84(1), 107.
7 Maire É, Adrien J, Petit C. Comptes Rendus Physique, 2014, 15, 674.
8 Islam M A, Kader M A, Hazell P J, et al. Materials and Design, 2020, 191, 108599.
9 Wang N Z, Chen X, Maire E, et al. Advanced Engineering Materials, 2020, 22(10), 2000264.
10 Wang Y, Chen F X, Wang X, et al. Materials Today Communications, 2023, 37, 106962.
11 Saleem F, Li S, Cui S T, et al. Materials Science and Engineering:A. 2023, 884, 145568.
12 Chen Y M, Das R, Battley M. International Journal of Solids and Structures, 2015, 52, 150.
13 Verma K S, Muchhala D, Panthi S K, et al. International Journal of Metalcasting, 2021, 16, 798.
14 Babcsan N, Beke S, Szamel G. Procedia Materials Science, 2014, 4, 69.
15 Zhu X C, Cheng Z K, Chen Y M. Journal of Microscopy, 2023, 291(2), 145.
16 Mukherjee M, García-Moreno F, Jiménez C, et al. Acta Materialia, 2017, 131, 156.
17 Wang D Q, Xue W W, Meng X J, et al. Journal of Materials Science, 2005, 40, 3475.
18 Gergely V, Clyne T W. Acta Materialia, 2004, 52(10), 3047.
19 Song Z L, Zhu J S, Ma L Q, et al. Materials Science and Engineering:A, 2001, 298(1-2), 137.
[1] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[2] 闫畅, 宋绪丁, 荆传贺, 封硕. 工业闭孔泡沫铝压缩力学性能及变形机理*[J]. 《材料导报》期刊社, 2017, 31(18): 92-96.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed