Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24060102-13    https://doi.org/10.11896/cldb.24060102
  无机非金属及其复合材料 |
碳量子点的制备、性质及在光催化领域中的应用研究进展
阳东胤, 赵媛*, 燕红
哈尔滨理工大学材料科学与化学工程学院,哈尔滨 150080
Research Progress on Preparation, Properties and Photocatalytic Application of Carbon Quantum Dots
YANG Dongyin, ZHAO Yuan*, YAN hong
School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
下载:  全 文 ( PDF ) ( 22831KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光催化是一种绿色清洁的生产工艺,是目前缓解能源与环境问题的有效方法。半导体材料因合适的带隙而成为一类优良的光催化剂,由于比表面积小、太阳光利用率低且在光催化反应过程中光生电子-空穴对易复合,导致其光催化反应性能不理想。碳量子点是一种类球形碳纳米材料,除了高比表面积、低毒性及良好的生物相容性外,其独特的上转换发光特性和良好的电子转移性能对提高光催化效率至关重要。因此,将碳量子点与半导体材料耦合改性是提高半导体材料光催化效率的重要方法。本文介绍了碳量子点的制备方法,阐明了其独特的光学与电学性质,并着重阐述了碳量子点在光催化产氢、光催化降解有机污染物、光催化还原CO2、光催化去除重金属污染和光催化灭菌领域中的应用,最后简要总结了目前碳量子点在光催化应用中的不足及对其未来的发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阳东胤
赵媛
燕红
关键词:  碳量子点  光催化  电子介质  光学性质    
Abstract: As a green and clean production technology, photocatalytic process is an effective way to alleviate energy and environmental problems. Semiconductor material is a good choice for photocatalysts because of their suitable band gaps, but the photocatalytic efficiency is not ideal due to its small specific surface area, low utilization rate of sunlight and easy recombination of photogenerated electron-hole pairs in the process of photocatalytic reaction. Carbon quantum dots are spherical carbon nanomaterials, which are essential for improving photocatalytic efficiency due to their unique upconversion luminescence properties and good electron transfer ability, in addition to high specific surface area, low toxicity and good biocompatibility. Therefore, coupling and modification of carbon quantum dots with semiconductor materials is an important method to improve the photocatalytic efficiency of semiconductor materials. In this paper, the preparation method of carbon quantum dots is introduced, its unique optical and electronic properties are clarified, and the applications of carbon quantum dots in the fields of photocatalytic hydrogen production, photocatalytic degradation of organic pollutants, photocatalytic reduction of CO2, photocatalytic removal of heavy metal pollution and photocatalytic sterilization are emphatically expounded. Finally, the shortcomings of carbon quantum dots in photocatalytic application at present are briefly summarized and its future development is prospected.
Key words:  carbon quantum dots    photocatalysis    electronic medium    optical property
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TB32  
基金资助: 国家自然科学基金面上项目(22278099);国家自然科学基金区域创新发展联合基金重点项目(U23A20135);哈尔滨理工大学博士科研启动金(8402/217045389)
通讯作者:  赵媛,博士,哈尔滨理工大学材料科学与化学工程学院讲师、硕士研究生导师。目前主要从事环境功能材料等方面的研究。zhaoyuan@hrbust.edu.cn    E-mail:  还原。
作者简介:  阳东胤,哈尔滨理工大学材料科学与化学工程学院硕士研究生,在赵媛讲师的指导下进行研究。目前主要研究领域为光催化CO
引用本文:    
阳东胤, 赵媛, 燕红. 碳量子点的制备、性质及在光催化领域中的应用研究进展[J]. 材料导报, 2025, 39(8): 24060102-13.
YANG Dongyin, ZHAO Yuan, YAN hong. Research Progress on Preparation, Properties and Photocatalytic Application of Carbon Quantum Dots. Materials Reports, 2025, 39(8): 24060102-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060102  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24060102
1 Sun W, Dong Y, Zhai X, et al. Chemical Engineering Journal, 2022, 430, 132872.
2 Sun B, Guo Z, Ren F, et al. Journal of Cleaner Production, 2023, 427, 139241.
3 Li J, Zhang B, Lu J, et al. Separation and Purification Technology, 2023, 305, 122333.
4 Liu W, Wang Q, Liu Z, et al. Journal of Colloid and Interface Science, 2022, 622, 21.
5 Zhang P, Song T, Wang T, et al. Applied Catalysis B: Environmental, 2017, 206, 328.
6 Tang F, Cai W Y, Chen F, et al. Materials Reports, 2023, 37(1), 24 (in Chinese).
唐飞, 蔡文宇, 陈飞, 等. 材料导报, 2023, 37(1), 24.
7 Lu H, Yang Q, Kong Y. Materials Reports, 2023, 37(4), 170 (in Chinese).
鲁浩, 杨强, 孔赟. 材料导报, 2023, 37(4), 170.
8 Merino-Garcia I, García G, Hernández I, et al. Journal of CO2 Utilization, 2023, 67, 102340.
9 Xin L, Qin L, Zhang T, et al. Inorganic Chemistry Communications, 2024, 160, 111868.
10 Sun Z, Liu T, Shen Q, et al. Applied Surface Science, 2023, 616, 156530.
11 Qi S, Liu X, Zhang R, et al. Inorganic Chemistry Communications, 2021, 133, 108907.
12 Wang J, Ren P, Du Y, et al. Journal of Alloys and Compounds, 2023, 947, 169659.
13 Sun X, He W, Yang T, et al. Chemical Engineering Journal, 2021, 412, 128679.
14 Zhu Z, Xia H, Li H. Diamond and Related Materials, 2023, 133, 109735.
15 Yu H, Huang J, Jiang L, et al. Chemical Engineering Journal, 2020, 402, 126187.
16 Preeyanghaa M, Vinesh V, Sabarikirishwaran P, et al. Carbon, 2022, 192, 405.
17 Hemmati-Eslamlu P, Habibi-Yangjeh A, Akinay Y, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 443, 114862.
18 Gong S, Lu W, Zhang W, et al. Materials Today Chemistry, 2023, 29, 101472.
19 Ebrahimian M R, Tavakolian M, Hosseini-Sarvari M. Journal of Environmental Chemical Engineering, 2023, 11(2), 109347.
20 Ismael M. Inorganic Chemistry Communications, 2023, 151, 110607.
21 Leelavathi H, Muralidharan R, Abirami N, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130449.
22 Gan J S, Li X B, Arif U, et al. Surfaces and Interfaces, 2023, 39, 102938.
23 Zhang Y, Qiao H, Yan Z H, et al. International Journal of Hydrogen Energy, 2023, 48(39), 14659.
24 Di J, Xia J, Ji M, et al. Langmuir, 2016, 32(8), 2075.
25 Yuan H, Fang F, Dong J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128575.
26 Shah B A, Din S T U, Sardar A, et al. Journal of Environmental Chemical Engineering, 2022, 10(6), 108655.
27 Xu X, Ray R, Gu Y, et al. Journal of the American Chemical Society, 2004, 126(40), 12736.
28 Sun Y P, Zhou B, Lin Y, et al. Journal of the American Chemical Society, 2006, 128(24), 7756.
29 Qu Y, Xu X, Huang R, et al. Chemical Engineering Journal, 2020, 382, 123016.
30 El Sharkawy H M, Dhmees A S, Tamman A R, et al. Journal of Energy Storage, 2020, 27, 101078.
31 Shafique M, Mahr M S, Yaseen M, et al. Materials Chemistry and Physics, 2022, 278, 125583.
32 Zhou L, Guo H, Wang Z, et al. Carbon, 2023, 213, 118249.
33 Dong Y, Zhou N, Lin X, et al. Chemistry of Materials, 2010, 22(21), 5895.
34 Yu J, Wang X, Chen L, et al. Chemical Engineering Journal, 2022, 435, 135033.
35 Huang H, Liang C, Sha H, et al. Chemical Research in Chinese Universities, 2019, 35(2), 171.
36 Meiyazhagan A, Aliyan A, Ayyappan A, et al. ACS Applied Materials & Interfaces, 2018, 10(42), 36275.
37 Qi K, Ye Y, Wei B, et al. Journal of Hazardous Materials, 2022, 432, 128759.
38 Atchudan R, Jebakumar I E T N, Shanmugam M, et al. Physica E: Low-dimensional Systems and Nanostructures, 2021, 126, 114417.
39 Yan Y, Chen J, Li N, et al. ACS Nano, 2018, 12(4), 3523.
40 Shih Y W, Tseng G W, Hsieh C Y, et al. Acta Materialia, 2014, 78, 314.
41 Ming H, Ma Z, Liu Y, et al. Dalton Transactions, 2012, 41(31), 9526.
42 Liu H, Ye T, Mao C. Angewandte Chemie International Edition, 2007, 46(34), 6473.
43 Li X, Wang H, Shimizu Y, et al. Chem. Commun, 2011, 47(3), 932.
44 Xu J, Olvera-Vargas H, Ou G H X, et al. Chemosphere, 2023, 341, 140077.
45 Ruan X, Sun A, Zhou T, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 660, 130854.
46 Li G, Huang J, Wang N, et al. Diamond and Related Materials, 2021, 116, 108242.
47 Liang C, Wang C, Xu K, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128559.
48 Wang D, Liu L, Wang Y, et al. Chemical Physics Letters, 2020, 747, 137340.
49 Mandal S K, Paul S, Datta S, et al. Applied Surface Science, 2021, 563, 150315.
50 Gao X, Ji X, Nguyen T T, et al. Vacuum, 2019, 164, 256.
51 Zhao F, Li X, Xiong T, et al. Separation and Purification Technology, 2023, 314, 123533.
52 Iqbal T, Ashraf M, Afsheen S, et al. Optical Materials, 2022, 125, 112116.
53 Qiang T, Wang S, Ren L, et al. Journal of Environmental Chemical Engineering, 2022, 10(6), 108784.
54 Xie X, Li S, Qi K, et al. Chemical Engineering Journal, 2021, 420, 129705.
55 Calabro R L, Yang D S, Kim D Y. Journal of Colloid and Interface Science, 2018, 527, 132.
56 Yao S, Hu Y, Li G. Carbon, 2014, 66, 77.
57 Zhou J, Booker C, Li R. Journal of the American Chemical Society, 2007, (129), 744.
58 Liu M, Xu Y, Niu F, et al. The Analyst, 2016, 141(9), 2657.
59 Kumari A, Kumar A, Sahu S K, et al. Sensors and Actuators B: Chemical, 2018, 254, 197.
60 Fan T, Zeng W, Tang W, et al. Nanoscale Research Letters, 2015, 10(1), 1.
61 Zhu H, Wang X, Li Y, et al. Chemical Communications, 2009, (34), 5118.
62 Xiao D, Yuan D, He H, et al. Journal of Luminescence, 2013, 140, 120.
63 Jin Y, Tang W, Wang J, et al. Journal of Alloys and Compounds, 2023, 932, 167627.
64 Zhang Y, Gao Z, Yang X, et al. RSC Advances, 2019, 9(2), 940.
65 Sahu S, Behera B, Maiti T K, et al. Chemical Communications, 2012, 48(70), 8835.
66 Yang X, Hou S, Chu T, et al. Industrial Crops and Products, 2021, 167, 113507.
67 Demchenko A P, Dekaliuk M O. Methods and Applications in Fluorescence, 2013, 1(4), 042001.
68 Rani U A, Ng L Y, Ng C Y, et al. Advances in Colloid and Interface Science, 2020, 278, 102124.
69 Gao W, Zhang S, Wang G, et al. Ceramics International, 2022, 48(24), 35986.
70 Zhang Y, Gao Z, Zhang W, et al. Sensors and Actuators B: Chemical, 2018, 262, 928.
71 Zhou J, Jia Q, Gong L, et al. Molecular Catalysis, 2024, 552, 113715.
72 Liu E, Xu C, Jin C, et al. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97, 316.
73 Qu Y, Li X, Cui M, et al. Materials Research Bulletin, 2024, 171, 112627.
74 Zhang M, Lai C, Li B, et al. Journal of Catalysis, 2019, 369, 469.
75 van Dam B, Nie H, Ju B, et al. Small, 2017, 13(48), 1702098.
76 Farshbaf M, Davaran S, Rahimi F, et al. Artificial Cells, Nanomedicine, and Biotechnology, 2017, 46(7), 1331.
77 Chen P, Wang W, Dong N, et al. Applied Surface Science, 2022, 604, 154629.
78 Meng W, Bai X, Wang B, et al. Energy & Environmental Materials, 2019, 2(3), 172.
79 Shah H, Xin Q, Jia X, et al. Arabian Journal of Chemistry, 2019, 12(7), 1083.
80 Yang R, Guo X, Jia L, et al. Microchimica Acta, 2017, 184(4), 1143.
81 Hazarika D, Karak N. Applied Surface Science, 2016, 376, 276.
82 Zhao F, Rong Y, Wan J, et al. Catalysis Today, 2018, 315, 162.
83 Ji M, Liu Y, Di J, et al. Applied Catalysis B: Environmental, 2018, 237, 1033.
84 Zang J, Chen C, Chen X, et al. Journal of Alloys and Compounds, 2023, 935, 167988.
85 Simsek E B, Tuna Ö. Diamond and Related Materials, 2023, 140, 110556.
86 Wang X, Zhao W, Lin H, et al. Journal of Alloys and Compounds, 2022, 920, 165896.
87 Zhou X, Chen D, Li T, et al. International Journal of Hydrogen Energy, 2024, 53, 1361.
88 Fujishima A, Honda K. Nature, 1972, 238(5358), 37.
89 Zhang P, Zeng G, Song T, et al. Journal of Catalysis, 2019, 369, 267.
90 Chen Y, Huang G, Gao Y, et al. International Journal of Hydrogen Energy, 2022, 47(14), 8739.
91 Li Y, Sun Y, Hu T, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 674, 131896.
92 Xu S, Li M, Wang Y, et al. International Journal of Hydrogen Energy, 2024, 51, 16.
93 Zhuang J, Ren S, Zhu B, et al. Chemical Engineering Journal, 2022, 446, 136873.
94 John B K, Mathew B. Optical Materials, 2023, 139, 113819.
95 Wongso V, Chung H K, Sambudi N S, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 394, 112436.
96 Zhao Y Y, Fan J Y, Wei J, et al. Materials Reports, 2023, 37(5), 59 (in Chinese).
赵艳艳, 范敬煜, 魏景, 等. 材料导报, 2023, 37(5), 59.
97 Hu J, Chen C, Tan C, et al. Applied Surface Science, 2023, 638, 158060.
98 Yu Q L, Liu C B, Jin T, et al. Materials Reports, 2024, 38(11), 45(in Chinese).
于巧玲, 刘成宝, 金涛, 等. 材料导报, 2024, 38(11), 45.
99 Wang F, Wang Y, Feng Y, et al. Applied Catalysis B: Environmental, 2018, 221, 510.
100 Zhang J, Liu R, Kuang M, et al. Materials Letters, 2023, 135004.
101 Wen Y, Wang Z, Cai Y, et al. Chemosphere, 2022, 295, 133784.
102 Ochedi F O, Liu D, Yu J, et al. Environmental Chemistry Letters, 2020, 19(2), 941.
103 Kulandaivalu T, Abdul R S, Sabli N, et al. Diamond and Related Materials, 2019, 91, 64.
104 Li H, Deng Y, Liu Y, et al. Chemical Communications, 2019, 55(30), 4419.
105 Li M, Wang M, Zhu L, et al. Applied Catalysis B: Environmental, 2018, 231, 269.
106 Bi W, Zhang L, Jiang H, et al. Chemical Engineering Journal, 2022, 433, 133679.
107 Yang J, Hou Y, Sun J, et al. Chemical Engineering Journal, 2023, 472, 145142.
108 Guo R T, Bi Z X, Lin Z D, et al. Journal of Colloid and Interface Science, 2022, 627, 343.
109 Xiao R, Zhang Y, Xiong Z, et al. Fuel, 2024, 357, 129837.
110 Zhao B, Xu H, Zhang K, et al. Chemosphere, 2022, 307, 135897.
111 He Z, Liang R, Zhou C, et al. Separation and Purification Technology, 2021, 255, 117725.
112 Zhang Y, Zhang H, Shu Y, et al. Applied Surface Science, 2023, 633, 157587.
113 Li Q, You Y, Hu X, et al. International Journal of Biological Macromolecules, 2024, 254, 128068.
114 Tang C, Liu C, Han Y, et al. Advanced Healthcare Materials, 2019, 8(10), 1801534.
115 Zhong Q, Zhang W D, Shi Q, et al. Journal of Solid State Chemistry, 2021, 302, 122426.
116 Song Z, Wang C, Shu S, et al. Journal of Photochemistry and Photo-biology B: Biology, 2022, 236, 112566.
117 Li Y, Han Y, Li H, et al. Journal of Colloid and Interface Science, 2024, 653, 764.
[1] 赵娣, 刘洪燕, 王树军, 孙欣语, 张紫璇, 齐学宇, 刘子帆. Z型异质结复合薄膜UIO-66-NH2/Ag/Ag3PO4/Ni的可见光催化性能及机理[J]. 材料导报, 2025, 39(8): 24030178-6.
[2] 杨明, 孙杰, 王金泽, 崔占朋, 吴敏, 杜伟. 金属有机框架及碳基材料在室内有机污染物控制中的研究进展[J]. 材料导报, 2025, 39(4): 24010153-8.
[3] 孔德茹, 刘靖, 杨晓林, 孙冬兰, 张进康. 溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究[J]. 材料导报, 2025, 39(1): 23100131-7.
[4] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[5] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[6] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[7] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[8] 张晓君, 武佳龙, 乔楠, 于大禹, 孙墨杰, 陈景. 氮掺杂木质素基碳量子点在次氯酸根离子检测中的应用[J]. 材料导报, 2024, 38(24): 23050197-5.
[9] 苗瑞霞, 张德栋, 谢妙春, 王业飞, 杨小峰. 本征缺陷对δ-InSe光电性质的影响[J]. 材料导报, 2024, 38(23): 23080234-7.
[10] 朱艳, 刘海龙, 贾仕奎, 李云峰, 首浩. Fe3O4/g-C3N4复合异质结的构建及紫外光降解罗丹明B[J]. 材料导报, 2024, 38(23): 23080020-7.
[11] 徐杨, 刘成宝, 郑磊之, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. 高结晶度g-C3N4在光催化领域的研究进展[J]. 材料导报, 2024, 38(21): 23060180-13.
[12] 刘京津, 赵华, 李会鹏, 蔡天凤. 氧磷共掺杂二维石墨相氮化碳的制备及光催化性能[J]. 材料导报, 2024, 38(21): 23070238-7.
[13] 莫日格吉乐, 包莫日根, 白璐, 谢兵, 于晓丽, 曹鸿璋, 赵丹蕾, 赵斯琴. CeO2光催化原理及改性研究进展[J]. 材料导报, 2024, 38(21): 23080150-6.
[14] 陈俊林, 常春. 具有三维花球状结构的钼酸铋在模拟太阳光照射下降解双氯芬酸钠[J]. 材料导报, 2024, 38(20): 23050078-9.
[15] 刘睿琦, 孙善富, 程鹏飞, 王莹麟, 郝熙冬. 光/电催化废塑料升级再造高附加值化学品研究进展[J]. 材料导报, 2024, 38(20): 23060226-7.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[7] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[8] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[9] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[10] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed