Abstract: As a green and clean production technology, photocatalytic process is an effective way to alleviate energy and environmental problems. Semiconductor material is a good choice for photocatalysts because of their suitable band gaps, but the photocatalytic efficiency is not ideal due to its small specific surface area, low utilization rate of sunlight and easy recombination of photogenerated electron-hole pairs in the process of photocatalytic reaction. Carbon quantum dots are spherical carbon nanomaterials, which are essential for improving photocatalytic efficiency due to their unique upconversion luminescence properties and good electron transfer ability, in addition to high specific surface area, low toxicity and good biocompatibility. Therefore, coupling and modification of carbon quantum dots with semiconductor materials is an important method to improve the photocatalytic efficiency of semiconductor materials. In this paper, the preparation method of carbon quantum dots is introduced, its unique optical and electronic properties are clarified, and the applications of carbon quantum dots in the fields of photocatalytic hydrogen production, photocatalytic degradation of organic pollutants, photocatalytic reduction of CO2, photocatalytic removal of heavy metal pollution and photocatalytic sterilization are emphatically expounded. Finally, the shortcomings of carbon quantum dots in photocatalytic application at present are briefly summarized and its future development is prospected.
1 Sun W, Dong Y, Zhai X, et al. Chemical Engineering Journal, 2022, 430, 132872. 2 Sun B, Guo Z, Ren F, et al. Journal of Cleaner Production, 2023, 427, 139241. 3 Li J, Zhang B, Lu J, et al. Separation and Purification Technology, 2023, 305, 122333. 4 Liu W, Wang Q, Liu Z, et al. Journal of Colloid and Interface Science, 2022, 622, 21. 5 Zhang P, Song T, Wang T, et al. Applied Catalysis B: Environmental, 2017, 206, 328. 6 Tang F, Cai W Y, Chen F, et al. Materials Reports, 2023, 37(1), 24 (in Chinese). 唐飞, 蔡文宇, 陈飞, 等. 材料导报, 2023, 37(1), 24. 7 Lu H, Yang Q, Kong Y. Materials Reports, 2023, 37(4), 170 (in Chinese). 鲁浩, 杨强, 孔赟. 材料导报, 2023, 37(4), 170. 8 Merino-Garcia I, García G, Hernández I, et al. Journal of CO2 Utilization, 2023, 67, 102340. 9 Xin L, Qin L, Zhang T, et al. Inorganic Chemistry Communications, 2024, 160, 111868. 10 Sun Z, Liu T, Shen Q, et al. Applied Surface Science, 2023, 616, 156530. 11 Qi S, Liu X, Zhang R, et al. Inorganic Chemistry Communications, 2021, 133, 108907. 12 Wang J, Ren P, Du Y, et al. Journal of Alloys and Compounds, 2023, 947, 169659. 13 Sun X, He W, Yang T, et al. Chemical Engineering Journal, 2021, 412, 128679. 14 Zhu Z, Xia H, Li H. Diamond and Related Materials, 2023, 133, 109735. 15 Yu H, Huang J, Jiang L, et al. Chemical Engineering Journal, 2020, 402, 126187. 16 Preeyanghaa M, Vinesh V, Sabarikirishwaran P, et al. Carbon, 2022, 192, 405. 17 Hemmati-Eslamlu P, Habibi-Yangjeh A, Akinay Y, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 443, 114862. 18 Gong S, Lu W, Zhang W, et al. Materials Today Chemistry, 2023, 29, 101472. 19 Ebrahimian M R, Tavakolian M, Hosseini-Sarvari M. Journal of Environmental Chemical Engineering, 2023, 11(2), 109347. 20 Ismael M. Inorganic Chemistry Communications, 2023, 151, 110607. 21 Leelavathi H, Muralidharan R, Abirami N, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130449. 22 Gan J S, Li X B, Arif U, et al. Surfaces and Interfaces, 2023, 39, 102938. 23 Zhang Y, Qiao H, Yan Z H, et al. International Journal of Hydrogen Energy, 2023, 48(39), 14659. 24 Di J, Xia J, Ji M, et al. Langmuir, 2016, 32(8), 2075. 25 Yuan H, Fang F, Dong J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128575. 26 Shah B A, Din S T U, Sardar A, et al. Journal of Environmental Chemical Engineering, 2022, 10(6), 108655. 27 Xu X, Ray R, Gu Y, et al. Journal of the American Chemical Society, 2004, 126(40), 12736. 28 Sun Y P, Zhou B, Lin Y, et al. Journal of the American Chemical Society, 2006, 128(24), 7756. 29 Qu Y, Xu X, Huang R, et al. Chemical Engineering Journal, 2020, 382, 123016. 30 El Sharkawy H M, Dhmees A S, Tamman A R, et al. Journal of Energy Storage, 2020, 27, 101078. 31 Shafique M, Mahr M S, Yaseen M, et al. Materials Chemistry and Physics, 2022, 278, 125583. 32 Zhou L, Guo H, Wang Z, et al. Carbon, 2023, 213, 118249. 33 Dong Y, Zhou N, Lin X, et al. Chemistry of Materials, 2010, 22(21), 5895. 34 Yu J, Wang X, Chen L, et al. Chemical Engineering Journal, 2022, 435, 135033. 35 Huang H, Liang C, Sha H, et al. Chemical Research in Chinese Universities, 2019, 35(2), 171. 36 Meiyazhagan A, Aliyan A, Ayyappan A, et al. ACS Applied Materials & Interfaces, 2018, 10(42), 36275. 37 Qi K, Ye Y, Wei B, et al. Journal of Hazardous Materials, 2022, 432, 128759. 38 Atchudan R, Jebakumar I E T N, Shanmugam M, et al. Physica E: Low-dimensional Systems and Nanostructures, 2021, 126, 114417. 39 Yan Y, Chen J, Li N, et al. ACS Nano, 2018, 12(4), 3523. 40 Shih Y W, Tseng G W, Hsieh C Y, et al. Acta Materialia, 2014, 78, 314. 41 Ming H, Ma Z, Liu Y, et al. Dalton Transactions, 2012, 41(31), 9526. 42 Liu H, Ye T, Mao C. Angewandte Chemie International Edition, 2007, 46(34), 6473. 43 Li X, Wang H, Shimizu Y, et al. Chem. Commun, 2011, 47(3), 932. 44 Xu J, Olvera-Vargas H, Ou G H X, et al. Chemosphere, 2023, 341, 140077. 45 Ruan X, Sun A, Zhou T, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 660, 130854. 46 Li G, Huang J, Wang N, et al. Diamond and Related Materials, 2021, 116, 108242. 47 Liang C, Wang C, Xu K, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128559. 48 Wang D, Liu L, Wang Y, et al. Chemical Physics Letters, 2020, 747, 137340. 49 Mandal S K, Paul S, Datta S, et al. Applied Surface Science, 2021, 563, 150315. 50 Gao X, Ji X, Nguyen T T, et al. Vacuum, 2019, 164, 256. 51 Zhao F, Li X, Xiong T, et al. Separation and Purification Technology, 2023, 314, 123533. 52 Iqbal T, Ashraf M, Afsheen S, et al. Optical Materials, 2022, 125, 112116. 53 Qiang T, Wang S, Ren L, et al. Journal of Environmental Chemical Engineering, 2022, 10(6), 108784. 54 Xie X, Li S, Qi K, et al. Chemical Engineering Journal, 2021, 420, 129705. 55 Calabro R L, Yang D S, Kim D Y. Journal of Colloid and Interface Science, 2018, 527, 132. 56 Yao S, Hu Y, Li G. Carbon, 2014, 66, 77. 57 Zhou J, Booker C, Li R. Journal of the American Chemical Society, 2007, (129), 744. 58 Liu M, Xu Y, Niu F, et al. The Analyst, 2016, 141(9), 2657. 59 Kumari A, Kumar A, Sahu S K, et al. Sensors and Actuators B: Chemical, 2018, 254, 197. 60 Fan T, Zeng W, Tang W, et al. Nanoscale Research Letters, 2015, 10(1), 1. 61 Zhu H, Wang X, Li Y, et al. Chemical Communications, 2009, (34), 5118. 62 Xiao D, Yuan D, He H, et al. Journal of Luminescence, 2013, 140, 120. 63 Jin Y, Tang W, Wang J, et al. Journal of Alloys and Compounds, 2023, 932, 167627. 64 Zhang Y, Gao Z, Yang X, et al. RSC Advances, 2019, 9(2), 940. 65 Sahu S, Behera B, Maiti T K, et al. Chemical Communications, 2012, 48(70), 8835. 66 Yang X, Hou S, Chu T, et al. Industrial Crops and Products, 2021, 167, 113507. 67 Demchenko A P, Dekaliuk M O. Methods and Applications in Fluorescence, 2013, 1(4), 042001. 68 Rani U A, Ng L Y, Ng C Y, et al. Advances in Colloid and Interface Science, 2020, 278, 102124. 69 Gao W, Zhang S, Wang G, et al. Ceramics International, 2022, 48(24), 35986. 70 Zhang Y, Gao Z, Zhang W, et al. Sensors and Actuators B: Chemical, 2018, 262, 928. 71 Zhou J, Jia Q, Gong L, et al. Molecular Catalysis, 2024, 552, 113715. 72 Liu E, Xu C, Jin C, et al. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97, 316. 73 Qu Y, Li X, Cui M, et al. Materials Research Bulletin, 2024, 171, 112627. 74 Zhang M, Lai C, Li B, et al. Journal of Catalysis, 2019, 369, 469. 75 van Dam B, Nie H, Ju B, et al. Small, 2017, 13(48), 1702098. 76 Farshbaf M, Davaran S, Rahimi F, et al. Artificial Cells, Nanomedicine, and Biotechnology, 2017, 46(7), 1331. 77 Chen P, Wang W, Dong N, et al. Applied Surface Science, 2022, 604, 154629. 78 Meng W, Bai X, Wang B, et al. Energy & Environmental Materials, 2019, 2(3), 172. 79 Shah H, Xin Q, Jia X, et al. Arabian Journal of Chemistry, 2019, 12(7), 1083. 80 Yang R, Guo X, Jia L, et al. Microchimica Acta, 2017, 184(4), 1143. 81 Hazarika D, Karak N. Applied Surface Science, 2016, 376, 276. 82 Zhao F, Rong Y, Wan J, et al. Catalysis Today, 2018, 315, 162. 83 Ji M, Liu Y, Di J, et al. Applied Catalysis B: Environmental, 2018, 237, 1033. 84 Zang J, Chen C, Chen X, et al. Journal of Alloys and Compounds, 2023, 935, 167988. 85 Simsek E B, Tuna Ö. Diamond and Related Materials, 2023, 140, 110556. 86 Wang X, Zhao W, Lin H, et al. Journal of Alloys and Compounds, 2022, 920, 165896. 87 Zhou X, Chen D, Li T, et al. International Journal of Hydrogen Energy, 2024, 53, 1361. 88 Fujishima A, Honda K. Nature, 1972, 238(5358), 37. 89 Zhang P, Zeng G, Song T, et al. Journal of Catalysis, 2019, 369, 267. 90 Chen Y, Huang G, Gao Y, et al. International Journal of Hydrogen Energy, 2022, 47(14), 8739. 91 Li Y, Sun Y, Hu T, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 674, 131896. 92 Xu S, Li M, Wang Y, et al. International Journal of Hydrogen Energy, 2024, 51, 16. 93 Zhuang J, Ren S, Zhu B, et al. Chemical Engineering Journal, 2022, 446, 136873. 94 John B K, Mathew B. Optical Materials, 2023, 139, 113819. 95 Wongso V, Chung H K, Sambudi N S, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 394, 112436. 96 Zhao Y Y, Fan J Y, Wei J, et al. Materials Reports, 2023, 37(5), 59 (in Chinese). 赵艳艳, 范敬煜, 魏景, 等. 材料导报, 2023, 37(5), 59. 97 Hu J, Chen C, Tan C, et al. Applied Surface Science, 2023, 638, 158060. 98 Yu Q L, Liu C B, Jin T, et al. Materials Reports, 2024, 38(11), 45(in Chinese). 于巧玲, 刘成宝, 金涛, 等. 材料导报, 2024, 38(11), 45. 99 Wang F, Wang Y, Feng Y, et al. Applied Catalysis B: Environmental, 2018, 221, 510. 100 Zhang J, Liu R, Kuang M, et al. Materials Letters, 2023, 135004. 101 Wen Y, Wang Z, Cai Y, et al. Chemosphere, 2022, 295, 133784. 102 Ochedi F O, Liu D, Yu J, et al. Environmental Chemistry Letters, 2020, 19(2), 941. 103 Kulandaivalu T, Abdul R S, Sabli N, et al. Diamond and Related Materials, 2019, 91, 64. 104 Li H, Deng Y, Liu Y, et al. Chemical Communications, 2019, 55(30), 4419. 105 Li M, Wang M, Zhu L, et al. Applied Catalysis B: Environmental, 2018, 231, 269. 106 Bi W, Zhang L, Jiang H, et al. Chemical Engineering Journal, 2022, 433, 133679. 107 Yang J, Hou Y, Sun J, et al. Chemical Engineering Journal, 2023, 472, 145142. 108 Guo R T, Bi Z X, Lin Z D, et al. Journal of Colloid and Interface Science, 2022, 627, 343. 109 Xiao R, Zhang Y, Xiong Z, et al. Fuel, 2024, 357, 129837. 110 Zhao B, Xu H, Zhang K, et al. Chemosphere, 2022, 307, 135897. 111 He Z, Liang R, Zhou C, et al. Separation and Purification Technology, 2021, 255, 117725. 112 Zhang Y, Zhang H, Shu Y, et al. Applied Surface Science, 2023, 633, 157587. 113 Li Q, You Y, Hu X, et al. International Journal of Biological Macromolecules, 2024, 254, 128068. 114 Tang C, Liu C, Han Y, et al. Advanced Healthcare Materials, 2019, 8(10), 1801534. 115 Zhong Q, Zhang W D, Shi Q, et al. Journal of Solid State Chemistry, 2021, 302, 122426. 116 Song Z, Wang C, Shu S, et al. Journal of Photochemistry and Photo-biology B: Biology, 2022, 236, 112566. 117 Li Y, Han Y, Li H, et al. Journal of Colloid and Interface Science, 2024, 653, 764.