GO/In2O3/PAZFP Composite Coating: Preparation and Resistance to Bovine Serum Protein Adhesion
LIU Bin1,†, WANG Wenqing1,†, YU Zhifei1, TANG Jing1, LI Zhengxin1, LIU Tianzhong2,*, SU Ge1,*
1 School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, Shandong, China 2 Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
Abstract: Biological attachment is the main cause of fouling that occurred in water environment facilities. The formation of organic or microbial membrane on the surface of materials is the first step of biological attachment. If the formation of initial organic film can be inhibited, further biological attachment can be effectively inhibited, and the harm of biological fouling on water environment facilities can be reduced. The organic membrane is mainly composed of protein and polysaccharide, so the materials that inhibit the attachment of polysaccharides and proteins can be applied to the surface of the facilities to prevent fouling. Hence, in this work, GO/In2O3 composites as filler and PAZFP resin emulsion as matrix were used to prepare a novel organic/inorganic composite coating with micro/nano surface structure and low surface energy, i.e. GO/In2O3/PAZFP composite film, and its anti-protein fouling property was characterized. The results show that the In2O3 nanoparticles have a cubic structure with the particle size of 20—60 nm and are evenly loaded on GO. GO has a large specific surface area and provides a large number of active sites for the loading of In2O3 particles, thus preventing the agglomeration of In2O3 particles and reducing the probability of electron-hole recombination. The investigation on the adsorption and degradation properties of bovine serum albumin (BSA) solution shows that the composite film has a certain adsorption effect on BSA protein in dark environment. Under natural light and UV light, the composite film has relatively strong photocatalytic performance of protein degradation. Due to the photocatalysis of In2O3 particles and the role of fluorinated monomer added in PAZFP coating, the composite film shows a synergistic antifouling effect and has a good anti-protein ability.
通讯作者:
* 刘天中,中国科学院青岛生物能源与过程研究所研究员,中国科学院生物燃料重点实验室副主任,海洋科学期刊副主编。1998年博士毕业于中国科学院过程工程研究所,2008年起在青岛生物能源所工作,主要研究方向为微藻生物技术、生物固碳、生物能源、生物材料。在 Chem. Eng. J., Bioresour. Technol., Biotechnol. Biofuel, Colloid.Surface B 等发表论文80余篇。liutz@qibebt.ac.cn 苏革,中国海洋大学材料科学与工程学院副教授。2004年于英国伯明翰大学获得博士学位。2005年至今在中国海洋大学材料科学与工程学院工作,主要研究方向为纳米功能材料。发表论文170余篇,包括Langmuir、Applied Surface Science、Solar Energy Materials & Solar Cells、Colloids and Surfaces B、Journal of Alloys and Compounds等。gesu@ouc.edu.cn
1 Wang J, Wang Z, Liu Y, et al. Journal of Membrane Science, 2016, 514, 407. 2 Kim D, Kang S M. Biomacromolecules, 2020, 21(12), 5086. 3 Wang J, Liu W, Liu T. Bioresource Technology, 2017, 244, 1245. 4 Trávníčková E, Pijáková B, Marešová D, et al. Journal of Environmental Chemical Engineering, 2020, 8, 104153. 5 Zhang D Y, Hao Q, Liu J, et al. Separation and Purification Technology, 2018, 192, 230. 6 Zhai W, Wang M, Song J, et al. Separation and Purification Technology, 2020, 239, 116589. 7 Ren P F, Yang H C, Liang H Q, et al. Langmuir, 2015, 31(21), 5851. 8 Huang B, Yang Z, Fang S, et al. Nanoscale, 2020, 12(10), 5834. 9 Martha S, Reddy K H, Parida K M. Journal of Materials Chemistry A, 2014, 2(10), 3621. 10 Lee J, Park T, Lee J, et al. Carbon, 2014, 76, 378. 11 Pawar K K, Chaudhary L S, Mali S S, et al. Journal of Colloid and Interface Science, 2020, 561, 287. 12 Du H Y, Wang J, Sun Y H, et al. Sensors and Actuators B:Chemical, 2015, 206, 753. 13 Mansha M, Qurashi A, Ullah N, et al. Ceramics International, 2016, 42(9), 11490. 14 Fatema K N, Sagadevan S, Liu Y, et al. Journal of Materials Science, 2020, 55(11), 13085. 15 Nasrollahzadeh M, Babaei F, Fakhri P, et al. RSC Advances, 2015, 5(14), 10782. 16 Dai K, Lu L H, Liu Q, et al. Dalton Transactions, 2014, 43(17), 6295. 17 Sun J, Wang Q, Wang Q, et al. Science of Advanced Materials, 2016, 8(6), 1280. 18 Li Z M, Zhang P Y, Li J G, et al. Journal of Photochemistry and Photobiology A Chemistry, 2013, 271, 111. 19 Zhu H H, Liu A, Shan F K, et al. RSC Advances, 2017, 7, 2172. 20 Gu F B, Nie R, Han D M, et al. Sensors and Actuators B: Chemical, 2015, 219, 94. 21 Yadav N G, Chaudhary L S, Sakhare P A, et al. Journal of Colloid and Interface Science, 2018, 527, 289. 22 Zhao H, Dong H X, Zhang L N, et al. Materials Chemistry and Physics, 2011, 130(3), 921. 23 Iqbal M, Bhatti H N, Younis S, et al. Diamond and Related Materials, 2021, 113, 108254. 24 Jothibas M, Manoharan C, Ramalingam S, et al. Journal of Molecular Structure, 2013, 1049, 239. 25 Zuo Z, Zhou M, Liao M, et al. Tenside Surfact Det, 2021(6), 58. 26 Yuan K, Guo-Wang P Y, Hu T, et al. Chemistry of Materials, 2015, 27(21), 7403. 27 Zalfani M, Hu Z Y, Yu W B, et al. Applied Catalysis B:Environmental, 2017, 205, 121. 28 Yuan K, Xu Y Z, Uihlein J, et al. Advanced Materials, 2016, 27(42), 6714. 29 Samak N A, Selim M S, Hao Z F, et al. Talanta, 2020, 211, 120655. 30 Guo L L, Xie N, Wang C, et al. Sensors and Actuators B: Chemical, 2018, 255, 1015. 31 Dong R, Zhang L P, Zhu Z Y, et al. Crysengcomm, 2017, 19(3), 562. 32 Rai P, Yoon J W, Kwak C H, et al. Journal of Materials Chemistry A, 2015, 4(1), 264. 33 Zhao Y F, Xie Y, Sun Z Y, et al. Science China Chemistry, 2012, 55(7), 1294. 34 Zhu D Y, Zhang Y C, Dai P Q, et al. Science Technology and Engineering, 2007, 7(13), 3067 (in Chinese). 朱定一, 张远超, 戴品强, 等. 科学技术与工程, 2007, 7(13), 3067. 35 Huang H, Yue Z K, Li G, et al. Journal of Materials Chemistry A, 2014, 2(47), 20118. 36 Hadjiivanov K I. Catalysis Reviews, 2000, 42(1-2), 71.