Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 21020065-10    https://doi.org/10.11896/cldb.21020065
  高分子与聚合物基复合材料 |
微纳米材料改性地质聚合物的研究进展
魏铭1, 张长森1,*, 王旭1,2, 诸华军1, 焦宝祥1, 孙楠1
1 盐城工学院材料科学与工程学院,江苏 盐城 224501
2 安徽理工大学材料科学与工程学院,安徽 淮南 232001
Alkali-activated Materials Modified with Micro-Nano Additives: a Review
WEI Ming1, ZHANG Changsen1,*, WANG Xu1,2, ZHU Huajun1, JIAO Baoxiang1, SUN Nan1
1 School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224501, Jiangsu, China
2 School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
下载:  全 文 ( PDF ) ( 21991KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 地质聚合物作为新兴的绿色环保、低能耗胶凝材料,具有早期强度高、耐酸碱等优异性能,但脆性大、韧性差等缺陷影响其推广应用;在地质聚合物中掺入微纳米材料可以有效地改善地质聚合物的性能,提高其韧性。微纳米材料在地质聚合物中均匀分散是保证改性后地质聚合物具有优良性能的关键,为此,可在掺入过程中采用外力的方法进行分散,也可对微纳米材料进行表面改性来提高其分散性能,且表面改性后的微纳米材料能够更好地与地质聚合物基体结合。
本文综述了纳米颗粒(如纳米二氧化硅、纳米二氧化钛)、碳纳米管、石墨烯、微米颗粒(如粉煤灰微球、硅灰)、微米纤维(如碳化硅晶须)等微纳米材料对地质聚合物的改性研究成果,总结了常见微纳米材料改性地质聚合物的分散方法及作用机理。其分散方法包括机械搅拌、超声分散和分散剂表面修饰。微纳米材料对地质聚合物的作用机理主要有填充作用、成核作用和桥接作用。微纳米材料能够填充地质聚合物的孔隙和裂缝,改善地质聚合物的孔结构;微纳米材料能够作为成核位点加速地质聚合物的缩聚过程,改善地质聚合物的微观结构与宏观性能;纤维状的微纳米材料具有桥接作用,可阻止裂缝的生成及扩展。此外,对于表面有基团(如羟基、羧基等)的微纳米材料,其基团可参与地质聚合物的聚合反应形成化学键合,改善微纳米材料与地质聚合物之间的粘结性。微纳米材料的比表面积较大,极易发生再团聚现象,不易存储,采用微纳米材料改性地质聚合物的制备工艺存在改善和优化的空间,因此,微纳米材料在地质聚合物应用过程中的分散程度始终是重点研究问题。本文最后对微纳米颗粒改性地质聚合物后续研究进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏铭
张长森
王旭
诸华军
焦宝祥
孙楠
关键词:  地质聚合物  纳米材料  微米材料  改性工艺  改性效果    
Abstract: As a new type of green-environmental and low-energy consumption cementitious material, geopolymers have excellent properties such as high early-age strength, and high resistance to acid and alkali, but the defects of high brittleness and poor toughness restricts their further application. Incorporating appropriate amount of micro-nano additives in the geopolymers can effectively improve the mechanical properties and toughness. The uniform dispersion of micro-nano additives is the key factor ensuring the excellent performance of geopolymers. For this reason, we must modify the surface of micro-nano particles or use external force to disperse them during the blending process. After the surface modification, micro-nano additives can be combined into the geopolymer matrix perfectly.
This paper summarized the current research results on the geopolymers-modified with micro-nano additives such as nanoparticles (nano silica, nano titanium dioxide), carbon nanotubes, graphene, micron particles (fly ash microsphere, silica fume) and micron fibers (silicon carbide whiskers). The common dispersion methods and mechanisms were investigated, including mechanical stirring, ultrasonic dispersion and dispersant surface modification. The modification mechanisms of micro-nano additives in geopolymers can be mainly concluded as filling, nucleation, and bonding bridging effects. The dispersed micro-nano particles can fill into the pores and cracks to effectively compact the pore structure. The micro-nano particles can also be used as nucleation sites to accelerate the polycondensation process and improve the microstructure and macroscopic properties of geopolymer. Fibrous micro-nano materials have a bridging effect to prevent the formation and expansion of cracks. In addition, for micro-nano materials with surface groups (such as hydroxyl groups, carboxyl groups, etc.), their groups can participate in the polymerization reaction of geological polymers to form chemical bonds, and improve the adhesion between micro-nano particles and geopolymers. The micro-nano additives have large specific surface area, and it is easy to reagglomerate during the storing process, so improvement in the preparation process is another factor should be concerned. Therefore, the dispersion degree of micro-nano additives in geopolymers are the focus of current research. Finally, the follow-up research focused on the geopolymers modified with micro-nano additives modified is prospected in this paper.
Key words:  geopolymer    nano material    micro material    modification process    modification effect
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  TQ172  
基金资助: 国家自然科学基金(51672236;51572234;51502259)
通讯作者:  * 张长森,盐城工学院材料科学与工程学院教授、硕士研究生导师。1982年毕业于武汉建筑材料学院(现武汉理工大学)。主要从事无机非金属材料的研究工作,重点研究胶凝材料和生态环境材料的制备、表征及应用开发等,在国内外期刊发表论文60余篇,授权国家发明专利8项。获教育部科技进步二等奖1项、中国建材联合会科技进步三等奖1项等。zcsen1@163.com   
作者简介:  魏铭,2019年6月毕业于盐城工学院,获得工学学士学位。现为盐城工学院材料学院材料加工工程专业硕士研究生,在张长森、焦宝祥教授的指导下进行研究。目前主要研究方向为无机胶凝材料-硅酸盐水泥。
引用本文:    
魏铭, 张长森, 王旭, 诸华军, 焦宝祥, 孙楠. 微纳米材料改性地质聚合物的研究进展[J]. 材料导报, 2023, 37(4): 21020065-10.
WEI Ming, ZHANG Changsen, WANG Xu, ZHU Huajun, JIAO Baoxiang, SUN Nan. Alkali-activated Materials Modified with Micro-Nano Additives: a Review. Materials Reports, 2023, 37(4): 21020065-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020065  或          http://www.mater-rep.com/CN/Y2023/V37/I4/21020065
1 Davidovits J. Concrete International, 1987, 9(12), 28.
2 Davidovits J. Journal of Thermal Analysis, 1998, 35, 429.
3 Weng Luqian, Sagoe-Crentsil Kwesi. Materials Science and Engineering B, 2005, 117(6), 163.
4 Bakharev T. Cement and Concrete Research, 2005, 35(6), 1224.
5 Majidi B. Materials Technology: Advanced Perform Materials, 2009, 24(2), 79.
6 Louise K T, Frank G C. Construction and Building Materials, 2013, 43, 125.
7 Yu Yue. Effects and mechanism analysis of PVA fibers and carbon nanotubes on geopolymers. Master's Thesis, Zhejiang University, China, 2018(in Chinese).
于悦. PVA纤维和碳纳米管对地质聚合物性能的影响与机理分析. 硕士学位论文, 浙江大学, 2018.
8 Launey M E, Ritchie R O. Advanced Materials, 2009, 21(20), 2103.
9 Ritchie R O. International Journal of Fracture, 1999, 100(1), 55.
10 Hertzberg R W. Journal of Engineering Materials and Technology, 1976, 99(1), 283.
11 Chen Xiao, Zhang Haoyu, Huo Shenhuan, et al. Journal of Composite Materials, 2019, 36(12), 2959 (in Chinese).
陈潇, 张浩宇, 霍神焕, 等. 复合材料学报, 2019, 36(12), 2959.
12 Zhu Baogui, Jiao Baoxiang, Zhang Changsen, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(10), 3066 (in Chinese).
朱宝贵, 焦宝祥, 张长森, 等. 硅酸盐通报, 2018, 37(10), 3066.
13 Song Xuefeng, Wang Jun, Wang Yan. Materials Reports B:Research Papers, 2017, 31(11), 121 (in Chinese).
宋学锋, 王骏, 王艳. 材料导报:研究篇, 2017, 31(11), 121.
14 Zhang L D, Mou J M. Nanomaterials and nanostructures, China Science Publishing & Media Ltd, China, 2001(in Chinese).
张立德, 牟季美. 纳米材料和纳米结构, 科学出版社, 2001.
15 Bharat Bhushan Jindal, Rahul Sharma. Construction and Building Materials, 2020, 252(20), 119028.
16 Adak D, Sarkar M, Mandal S. Construction and Building Materials, 2014, 70, 453.
17 Adak D, Sarkar M, Mandal S, et al. Construction and Building Materials, 2017, 135(15), 430.
18 Zawrah M F, Abo S S E, Khattab R M. Construction and Building Materials, 2020, 246, 118486.
19 Duan Ping, Yan Chunjie, Luo Wenjun, et al. Construction and Building Materials, 2016, 106, 115.
20 Guo Xiaolu, Shi Huisheng. Chinese Journal of Materials Research, 2017, 37(2), 110 (in Chinese).
郭晓潞, 施惠生. 材料研究学报, 2017, 37(2), 110.
21 Guo Xiaolu, Shi Huisheng, Xia Ming. Journal of Functional Materials, 2016, 47(11), 11001 (in Chinese).
郭晓潞, 施惠生, 夏明. 功能材料, 2016, 47(11), 11001.
22 Wang Xu. Study on the preparation and properties of geopolymer modified by micro-nano materials. Master's Thesis, Anhui University of Science and Technology, China, 2020(in Chinese).
王旭. 微纳米材料改性地质聚合物的制备及性能研究. 硕士学位论文, 安徽理工大学, 2020.
23 Navid Ranjbar, Mehdi Mehrali, Mehrali Mohammad, et al. Cement and Concrete Research, 2015, 76, 222.
24 Yang Tao, Zhu Huajun, Zhang Zuhua, et al. Cement and Concrete Research, 2018, 109(04), 198.
25 Rishabh Bajpai, Choudhary Kailash, Srivastava Anshuman, et al. Journal of Cleaner Production, 2020, 254, 120147.
26 Rahman A S, Jackson P, Radford D W. Cement and Concrete Compo-sites, 2020, 108, 103496.
27 Zhang C S, Chen J H, et al. Powder technology and equipment, East China University of Science and Technology Press, 2007(in Chinese).
张长森, 程俊华, 等. 粉体技术及设备, 华东理工大学出版社, 2007.
28 周群飞, 饶桥兵, 郑永华. 中国专利, CN205042404U, 2016.
29 Liu Zhongchang. Value Engineering, 2017, 36(13), 157 (in Chinese).
刘中常. 价值工程, 2017, 36(13), 157.
30 Zhang Bin, Chen Tijun, Wang Linyun, et al. Journal of Functional Materials, 2019, 50(8), 8133 (in Chinese).
张斌, 陈体军, 王凌云, 等. 功能材料, 2019, 50(8), 8133.
31 Lyu Jiazhen, Feng Xin, Zhang Yuncan, et al. Journal of Nanjing University of Chemical Technology, 2001, 23(1), 27 (in Chinese).
吕家桢, 冯新, 张云灿, 等. 南京化工大学学报, 2001, 23(1), 27.
32 Pacheco-Torgal F, Jalali S. Construction and Building Materials, 2011, 25(2), 582.
33 Li H, Xiao H G, Ou J P. Cement and Concrete Research, 2004, 34(3), 435.
34 Bjornstrom J, Martinelli A, Matic A, et al. Chemical Physics Letters, 2004, 392(1-3), 242.
35 Erich D, Bernal S A, Provis J L, et al. Cement and Concrete Composites, 2013, 35, 1.
36 Luo Zhiyu, Lia Wengui, Gan Yixiang, et al. Cement and Concrete Composites, 2021, 117, 103883.
37 Mehmet Eren Gülsßan, Radhwan Alzeebaree, Ayad Ali Rasheed, et al. Construction and Building Materials, 2019, 211, 271.
38 Zhang Peng, Zhao Yankun, Jiao Meiju, et al. Journal of Civil Engineering and Management, 2019, 36(5), 68 (in Chinese).
张鹏, 赵燕坤, 焦美菊, 等. 土木工程与管理学报, 2019, 36(5), 68.
39 Rahman A S, Hossain M E, Radford D W. Journal of Materials Research and Technology, 2018, 7(1), 45.
40 Nik A S, Omran O L. Construction and Building Materials, 2013, 44(7), 654.
41 Li H, Zhang M H, Ou J P. Wear, 2006, 260 (11-12), 1262.
42 Davidovites J. In: Symposium on Cement and Concrete in the Global Environment. Chicago, 1993, pp. 10.
43 Yang C X, Zhao W B. Journal of Heilongjiang University of Science and Technology, 2018, 28(3), 286(in Chinese).
杨春霞, 赵文彬. 黑龙江科技大学学报, 2018, 28(3), 286.
44 Liu Y Y. Influence of incorporation of modified carbon nanotubes on pro-perties of concrete. Master's Thesis, Suzhou University of Science and Technology, China, 2018(in Chinese).
刘洋洋. 改性碳纳米管的掺入对混凝土性能影响. 硕士学位论文, 苏州科技大学, 2018.
45 Velram Balaji Mohan, Kin-tak Lau, David Hui, et al. Composites Part B: Engineering, 2018, 142(1), 200.
46 Xu Z, Gao C. Materials Today, 2015, 18 (9), 480.
47 Shu Yan, He Peigang, Jia Dechang, et al. Ceramics International, 2015, 41(9), 11242.
48 Candamano S, Sgambitterra E, Lamuta C, et al. Materials Letters, 2019, 236(1), 550.
49 Liu Xinhao, Wu Yueyue, Li Maosen, et al. Construction and Building Materials, 2020, 247(30), 118544.
50 Zhang L W, Kai M F, Chen X H. Cement and Concrete Composites, 2020, 109(5), 103522.
51 Shamsaei Ezzatollah, Felipe Basquiroto de Souza, Yao Xupei, et al. Construction and Building Materials, 2018, 183(6), 642.
52 Shang Jun, Dai Jianguo, Zhao Tiejun, et al. Journal of Cleaner Production, 2018, 255(8), 746.
53 Wang Xiaozhuang. Preparation and application research of geopolymer repair mortar. Master's Thesis, Shenyang Jianzhu University, China, 2018(in Chinese).
王晓壮. 无机矿物聚合物基修补砂浆的制备与应用研究. 硕士学位论文, 沈阳建筑大学, 2018.
54 Liu Y W, Zhang Z H, Shi C J, et al. Journal of the Chinese Ceramic Society, 2020, 48, 1689(in Chinese).
刘翼玮, 张祖华, 史才军, 等. 硅酸盐学报, 2020, 48(11), 1689.
55 张长森, 李杨, 穆子枫, 等. 中国专利, CN111423164A, 2020.
56 Chen Erfan, Chen Dong. Polymer Materials Science & Engineering, 2006(2), 20(in Chinese).
陈尔凡, 陈东. 高分子材料科学与工程, 2006(2), 20.
[1] 昌姗, 崔学民, 贺艳, 苏俏俏, 窦怀远. 碳酸酐酶在地质聚合物微球表面的固定及活性表征[J]. 材料导报, 2023, 37(3): 21030043-7.
[2] 唐飞, 蔡文宇, 陈飞, 朱晨, 刘成宝, 陈志刚. g-C3N4/过渡金属硫化物复合材料的结构设计、合成及光催化应用[J]. 材料导报, 2023, 37(1): 20100135-9.
[3] 李佩悦, 马立云, 谢恩俊, 任子杰, 周新军, 高惠民, 吴建新. 六方氮化硼高导热纳米材料:晶体结构、导热机理及表面修饰改性[J]. 材料导报, 2022, 36(6): 20090231-12.
[4] 刘璐, 王李波, 刘大荣, 胡前库, 周爱国. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 20020137-10.
[5] 丁梅鹃, 史慧芳, 安众福. 有机室温磷光材料在生物医学中的应用[J]. 材料导报, 2022, 36(3): 22010004-11.
[6] 陈龙, 刘兆利, 杨旭东, 张偌涵, 孙玮良, 刘文. 纳米材料光催化灭活新型冠状病毒SARS-CoV-2研究进展与启示[J]. 材料导报, 2022, 36(20): 22100084-12.
[7] 郑皓华, 邓雅洁, 吴志林. 纳米包装材料表面改性技术及包装形态表现研究[J]. 材料导报, 2022, 36(19): 21110079-5.
[8] 徐海燕, 杨雪雷, 王爱国, 朱颖灿, 刘开伟, 黄濛, 王星尧. 地质聚合物基防护涂料及其性能提升技术的研究进展[J]. 材料导报, 2022, 36(19): 21110045-7.
[9] 姚红蕊, 尹旭, 王娜, 齐舵, 姜岩. 二维纳米材料在金属防腐领域的应用研究进展[J]. 材料导报, 2022, 36(10): 20080261-9.
[10] 邵丹, 王美玲, 陈志炎, 高亚军, 庞欢. 碳材料在色素电化学传感中的研究进展[J]. 材料导报, 2021, 35(z2): 22-27.
[11] 文世涛, 仲美娟, 尚莉莉, 田根林, 杨淑敏, 马建锋, 刘杏娥. 水热炭化法制备生物质基碳纳米材料研究进展[J]. 材料导报, 2021, 35(z2): 28-32.
[12] 刘静, 高正阳, 王杰, 陈霈儒, 杨璐冰. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 42-47.
[13] 解琳, 何文涛, 高京. 聚膦腈微纳米材料的制备及应用[J]. 材料导报, 2021, 35(Z1): 578-585.
[14] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[15] 李刊, 魏智强, 乔宏霞, 路承功, 郭健, 乔国斌. 四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 654-661.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed