Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 21020076-7    https://doi.org/10.11896/cldb.21020076
  金属与金属基复合材料 |
金属液测速技术的原理及研究进展
王畅1, 李安敏1,2,3,*, 王晓东4,*
1 广西大学资源环境与材料学院,南宁 530004
2 广西有色金属及特色材料加工重点实验室,南宁 530004
3 广西铝产业生态协同创新中心,南宁 530004
4 中国科学院大学材料科学与光电技术学院,北京 100049
Principles and Research Progress of Metal Fluid Velocimetry Techniques
WANG Chang1, LI Anmin1,2,3,*, WANG Xiaodong4,*
1 School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
2 Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004 China
3 Center of Ecological Collaborative Innovation for Aluminum Industry in Guangxi, Nanning 530004, China
4 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
下载:  全 文 ( PDF ) ( 19157KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 流动是自然界和工程领域中的普遍现象,对流动行为的理解和监控一直是人们想要实现的目标。金属流体在冶金工业中十分常见,其流动行为和传输过程涉及高炉、钢包、结晶器等多个加工环节,对生产效率和产品质量具有显著的影响。在连铸工艺、连续热镀锌工艺及再生铝生产等常见的材料加工过程中,金属液流速的大小、方向、变化规律对调节工艺参数、控制产品质量具有重要意义,面对不透明、高温、强腐蚀性的熔融金属流体,如何实现流速的精准测量一直是一大难题。在过去20年,随着电磁技术的不断进步,金属液的测速技术有了很大的发展,逐步实现了对多相三维湍流的实时在线非接触测量,应用范围也逐渐向晶体生长、电化学、核工业、医疗等领域扩展。由于金属液的测速方法种类繁多,需要针对不同的工业场景选择不同的方法,本文介绍工业常用的几种金属液测速方法的原理、适用场景和研究进展,分析不同方法之间的区别与各自的优缺点,并对未来发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王畅
李安敏
王晓东
关键词:  金属流体  流速  连续铸造  接触式测量  非接触式测量    
Abstract: Flow is a very common phenomenon in nature and engineering fields, and measurement and control of flow have always been essential goals. Liquid metal flow is indispensable in the metallurgical industry, and its flow behavior and transport process involve multiple processing links, including use of blast furnaces, ladles and molds, all of which significantly impact both production efficiency and product quality. In material processes such as continuous casting, continuous hot galvanisation, and secondary aluminium production, the speed,direction and changing law of molten metal flow is of great important for adjusting process parameters and controlling product quality. However, in the face of opaqueness, high temperature, and chemically aggressive molten metal fluids, accurately measuring the flow velocity yield poses a challenge for researchers and engineers. In the past 20 years, with the advancement of electromagnetic technology, great progress has been achieved in velocity measurement techniques for molten metal, and real-time online noncontact measurement of multiphase three-dimensional turbulence has gradually been realised. The application of velocity measurement technology has gradually been extended to fields such as crystal growth, electrochemistry, the nuclear industry and medicine. There are the wide variety of molten metal velocity measurement methods, and each method has its own advantages and disadvantages. In this paper, we introduce the principles, application scenarios and research progress of several molten metal velocity measurement methods commonly used in industry, analyse the differences among different methods and their respective advantages and disadvantages, and discuss prospects for their future development.
Key words:  metal fluid    flow measurement    continuous casting    contact measurement method    non-contact measurement method
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  TB126  
基金资助: 2021年中央引导地方科技发展资金专项(桂科ZY21195030);2022年广西科技基地和人才专项(桂科AD21238010);广西有色金属及特色材料加工重点实验室基金(2021GXMPSF02)
通讯作者:  * 李安敏,广西大学资源环境与材料学院副教授、硕士研究生导师。1995年7月本科毕业于武汉科技大学材料系,2010年6月在广西大学结构工程专业取得博士学位。主要从事高熵合金、铝合金的强韧化、复合材料的研究工作。近年来,在高熵合金、铝合金、复合材料等领域发表论文30余篇,包括Journal of Materials Engineering and Performance、Acta Metallurgica Sinica、Journal of Electronic Materials等。lianmin@gxu.edu.cn
王晓东,2002年博士毕业于大连理工大学,同年,进入德国伊尔梅瑙科技大学(Ilmenau)从事博士后研究,从事纳米磁性材料的研究工作;2003—2008年在法国国家科研中心(CNRS)材料的电磁过程研究所(EPM/SIMAP)从事材料的电磁过程的研究工作;2008—2010年在加拿大麦吉尔大学(McGill)从事电磁检测方面的工作;2010—2011年在德国伊尔梅瑙科技大学(Ilmenau)从事磁流体力学方向的研究工作,现为中国科学院大学材料科学与光电技术学院教授,博士研究生导师、中国科学院“百人计划”入选者。发表论文70余篇,发表著作两部,从事与电磁场相关的材料科学研究工作。xiaodong.wang@ucas.ac.cn   
作者简介:  王畅,2020年毕业于河北科技大学,获得工学学士学位。现为广西大学与中国科学院大学联合培养硕士生,主要研究方向为材料的电磁过程。
引用本文:    
王畅, 李安敏, 王晓东. 金属液测速技术的原理及研究进展[J]. 材料导报, 2023, 37(4): 21020076-7.
WANG Chang, LI Anmin, WANG Xiaodong. Principles and Research Progress of Metal Fluid Velocimetry Techniques. Materials Reports, 2023, 37(4): 21020076-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020076  或          http://www.mater-rep.com/CN/Y2023/V37/I4/21020076
1 Jin G, Jiao J J, Wu X. Mining & Processing Equipment, 2015, 43(12), 10 (in Chinese).
金光, 焦晶晶, 吴晅. 矿山机械, 2015, 43(12), 10.
2 Rutkevich I M. Fluid Dynamics, 1981, 16(3), 414.
3 Iguchi M, Takeuchi M, Kawabata H, et al. Materials Transactions, JIM, 1994, 35(10), 716.
4 Mikrovas A C, Argyropoulos S A. Metallurgical & Materials Transactions B, 1993, 24(6), 1009.
5 Lee H C, Evans J W, Vives C. Metallurgical and Materials Transactions B, 1984, 15(4), 734.
6 Iguchi M, Kawabata H, Morita Z. High Temperature Materials & Processes, 2000, 19(3-4), 187.
7 Iguchi M, Kosaka H, Hayashi A, et al. Metallurgical & Materials Tran-sactions B, 1999, 30(1), 53.
8 Iguchi M, Terauchi Y. ISIJ International, 2002, 42(9), 939.
9 Iguchi M, Kawabata H, Ogura T, et al. ISIJ International, 1996, 36(1), 190.
10 Mizukami H, Hanao M, Hiraki S, et al. Tetsu-to-Hagane, 2000, 86(4), 265.
11 Poornapushpakala S, Gomathy C, Sylvia J I, et al. Flow Measurement and Instrumentation, 2014, 38, 98.
12 Sureshkumar S, Sabih M, Narmadha S, et al. Nuclear Engineering and Design, 2013, 265, 1223.
13 Kumar M, Tordjeman P, Bergez W, et al. Review of Scientific Instruments, 2015, 86(10), 106104.
14 Guichou R, Ayroles H, Zamansky R, et al. Journal of Applied Physics, 2019, 125(9), 94504.
15 Kumar M, Tordjeman P, Bergez W, et al. IEEE Transactions on Nuclear Science, 2016, 1, 1.
16 Krauter N, Galindo V, Wondrak T, et al. Journal of Nuclear Engineering and Radiation Science, 2021. 86(10), 106104.
17 Forbriger J, Stefani F. Measurement Science & Technology, 2015, 26(10), 105303.
18 Looney R, Priede J. Flow Meas Urement Instrum, 2017, 1705, 02939.
19 Krauter N, Stefani F. Measurement Science & Technology, 2017, 28(10), 105301.
20 Krauter N, Stefani F. Materials Science and Engineering, 2018, 424(1), 12004.
21 Eckert S, Gerbeth G. Experiments in Fluids, 2002, 32(5), 542.
22 Jaafar W, Fischer S, Bekkour K. Measurement, 2009, 42(2), 175.
23 Eckert S, Gerbeth G, Melnikov V I. Experiments in Fluids, 2003, 35(5), 381.
24 Cramer A, Zhang C, Eckert S. Flow Measurement and Instrumentation, 2004, 15(3), 145.
25 Eckert S, Gerbeth G, Melnikov V I. Experiments in Fluids, 2003, 35(5), 381.
26 Eckert S, Buchenau D, Gerbeth G, et al. Journal of Nuclear Science & Technology, 2011, 48(4), 490.
27 Perez A, Kelley D H. Journal of Visualized Experiments, 2015, 102, 52622.
28 Gates P E, Gurung A, Mazzaro L, et al. Ultrasound in Medicine & Biology, 2018, 44(7), 1392.
29 Ratajczak M, Gundrum T, Stefani F, et al. Journal of Sensors, 2014, 2014, 1.
30 Stefani F, Gundrum T, Gerbeth G. Physical Review E, 2004, 70, 56306.
31 Ratajczak M, Wondrak T, Timmel K, et al. Journal for Manufacturing Science and Production, 2015, 15(1), 41.
32 Wondrak T, Galindo V, Gerbeth G, et al. Measurement Science & Technology, 2010, 21(4), 45402.
33 Wondrak T, Eckert S, Gerbeth G, et al. Steel Research International, 2014, 85(8), 1266.
34 Wondrak T, Pal J, Stefani F, et al. Flow Measurement and Instrumentation, 2017, 62, 269.
35 Wondrak T, Stefani F, Galindo V, et al. Materials Science and Engineering, 2018, 424(1), 12007.
36 Wondrak T, Galindo V, Stefani F, et al. International Journal of Applied Electromagnetics and Mechanics, 2019, 59(4), 1291.
37 Ratajczak M, Wondrak T, Stefani F. Philosophical Transactions A , 2016, 374, 2070.
38 Davidson P A. An introduction to magnetohydrodynamics, Cambridge University Press, UK, 2001.
39 Thess A, Votyakov E V, Kolesnikov Y. Physical Review Letters, 2006, 96(16), 164501.
40 Halbedel B, Resagk C, Thess A, et al. Flow, Turbulence and Combustion, 2014, 92(1), 361.
41 Werner M, Halbedel B. IEEE Transactions on Magnetics, 2012, 48(11), 2925.
42 Vasilyan S, Ebert R, Weidner M, et al. Measurement Science & Technology, 2015, 26(11), 115302.
43 Vakaliuk O V, Ainslie M D, Halbedel B. Superconductor Science & Technology, 2018, 31(8), 84003.
44 Viré A, Knaepen B, Thess A. Physics of Fluids (1994), 2010, 22(12), 125101.
45 Jian D, Karcher C. Measurement Science & Technology, 2012, 23(7), 894.
46 Kolesnikov Y, Karcher C, Thess A. Metallurgical and Materials Transactions B, Process Metallurgy and Materials Processing Science, 2011, 42(3), 441.
47 Zheng J C, Liu R C, Wang X D. Acta Metallurgica Sinica, 2020, 56(7), 3 (in Chinese).
郑锦灿, 刘润聪, 王晓东. 金属学报, 2020, 56(7), 3.
48 Wang X D, Thess A, Moreau R, et al. Journal of Applied Physics, 2016, 120(1), 188.
49 Wang B, Wang X D. Measurement Science & Technology, 2018, 29(12), 125601.
50 Tan Y Q, Liu R C, Dai S J, et al. Nuclear Science and Techniques, 2018, 29(6), 80.
51 Kolesnikov Y, Karcher C, Thess A. Metallurgical and materials transactions B, Process Metallurgy and Materials Processing Science, 2011, 42(3), 441.
52 Carmen Stelian. Flow Measurement & Instrumentation, 2013, 33, 36.
53 Wang X D, Kolesnikov Y, Thess A. Measurement Science and Technology, 2012, 23(4), 45005.
[1] 林震霞, 党莹, 徐祺, 李丹. 690合金在核电厂一、二回路工况下的均匀腐蚀性能研究[J]. 材料导报, 2020, 34(Z2): 437-440.
[2] 鞠娜, 雷玉成, 陈钢, 朱强, 李天庆, 王丹. 410不锈钢在550 ℃流动的铅铋共晶合金中的腐蚀行为[J]. 材料导报, 2019, 33(20): 3489-3493.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed