Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24050034-7    https://doi.org/10.11896/cldb.24050034
  无机非金属及其复合材料 |
B、N掺杂对α-石墨炔热电输运特性的影响
蒋旭浩, 刘远超*, 李耑, 徐一帆, 李梓硕, 刘新昊
北京石油化工学院机械工程学院,北京 102617
The Influence of B & N Doping on the Thermoelectric Transport Properties of α-Graphyne
JIANG Xuhao, LIU Yuanchao*, LI Zhuan, XU Yifan, LI Zishuo, LIU Xinhao
School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
下载:  全 文 ( PDF ) ( 8638KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为新兴二维纳米结构材料,石墨炔在热电领域具有广阔的应用前景。为了进一步提高其热电性能,采用基于第一性原理的计算方法,深入研究了B、N掺杂的调控方法对α-石墨炔的热电输运特性的影响规律。研究结果表明,B、N掺杂后α-石墨炔的热导率降低,随着温度的升高其热导率进一步降低;对于其电输运能力,随着掺杂浓度的提高,α-石墨炔表现出从半导体性到金属性再到半导体性的转变;在最佳载流子浓度下,其最大功率因数从0.011 W/(m·K2)增至0.019 W/(m·K2),最大热电优值从0.566增至2.414,热电转换效率得到数倍提高。这表明B、N掺杂可以有效调控α-石墨炔的热电输运特性。研究结果可为石墨炔热电性能的调控提供理论参考,推动其在热电领域的实际应用进程。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋旭浩
刘远超
李耑
徐一帆
李梓硕
刘新昊
关键词:  石墨炔  掺杂  第一性原理  声子热输运  热电优值  调控    
Abstract: As an emerging two-dimensional nanostructured material, graphyne has broad application prospects in the field of thermoelectricity. In order to further improve its thermoelectric properties, using first-principle calculation methods, this study thoroughly investigates the influence laws of the modulation methods of B and N doping on the thermoelectric transport properties of α-graphyne. The results reveal that after B and N doping, the thermal conductivity of α-graphyne further decreases, and the decrease continues with increasing temperature. Regarding its electrical transport properties, α-graphyne exhibits a transition from semiconducting to metallic and then back to semiconducting behavior with increasing doping concentration. At the optimal carrier concentration, the maximum power factor increases from 0.011 W/(m·K2) to 0.019 W/(m·K2), and the maximum thermoelectric figure of merit increases from 0.566 to 2.414, resulting in a significant improvement in thermoelectric conversion efficiency. These findings indicate that B and N doping can effectively regulate the thermoelectric transport properties of α-graphyne. The results of this study provide valuable theoretical reference for understanding and controlling the thermoelectric properties of graphyne and facilitate its practical application in the field of thermoelectricity.
Key words:  graphyne    doping    first principles    phonon thermal transport    thermoelectric figure of merit    modulation
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TB34  
  O469  
基金资助: 国家自然科学基金(51106012)
通讯作者:  *刘远超,博士,北京石油化工学院机械工程学院能源工程系副教授、硕士研究生导师。目前主要从事能源高效综合利用与节能技术、微纳尺度传热学等领域研究。liuyuanchao@bipt.edu.cn   
作者简介:  蒋旭浩,北京石油化工学院机械工程专业学术硕士研究生,从事二维材料石墨炔的热电输运特性研究。
引用本文:    
蒋旭浩, 刘远超, 李耑, 徐一帆, 李梓硕, 刘新昊. B、N掺杂对α-石墨炔热电输运特性的影响[J]. 材料导报, 2025, 39(10): 24050034-7.
JIANG Xuhao, LIU Yuanchao, LI Zhuan, XU Yifan, LI Zishuo, LIU Xinhao. The Influence of B & N Doping on the Thermoelectric Transport Properties of α-Graphyne. Materials Reports, 2025, 39(10): 24050034-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050034  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24050034
1 Jesse M, Mark L. Applied Physics Letters, 2013, 102, 093103.
2 Yu Z H, Zhang L F, Wu J, et al. Acta Physica Sinica, 2023, 72(5), 135.
余泽浩, 张力发, 吴靖, 等. 物理学报, 2023, 72(5), 135.
3 Li G X, Li Y L, Liu H B, et al. Chemical Communications, 2010, 46, 3256.
4 Liu Z H, Gao W H, Guo F K, et al. Materials Lab, 2022, 1, 220003.
5 Kang B T, Lee J Y. Carbon, 2015, 84, 246.
6 Antonio R P, Pablo G. Carbon, 2017, 114, 301.
7 Nihan K P, Cem S. Nanotechnology, 2014, 25, 185701.
8 Mu Y W, Li S D. Journal of Materials Chemistry C, 2016, 4, 7339.
9 Chang C K, Satender K, Kuo C C, et al. ACS Nano, 2013, 7, 1333.
10 Panchakarla L S, Subrahmanyam K S, Saha S K, et al. Advanced Materials, 2009, 21, 4726.
11 Yun J N, Zhang Y N, Xu M Z, et al. Journal of Materials Science, 2017, 52, 10294.
12 Barnali B, Utpal S. The Journal of Physical Chemistry C, 2016, 120(47), 26793.
13 Fouad N A, Ali B A. The European Physical Journal B, 2023, 96, 127.
14 Zhang L H, Wang N, Zhang S L, et al. RSC Advances, 2014, 4, 54879.
15 Yuki A, Yuki I, Kuniharu T, et al. 2D Materials, 2017, 4, 025019.
16 Huang W, Wang J S, Liang G C. Physical Review B, 2011, 84, 045410.
17 He X, Cao X H, Ding Z K, et al. Journal of Applied Physics, 2024, 135, 204502.
18 Cao L M, Li X B, Zuo M, et al. Journal of Magnetism and Magnetic Materials, 2019, 485, 136.
19 Grimme S. Journal of Computational Chemistry, 2006, 27(15), 1787.
20 Blöchl P E, Jepsen O, Andersen O K. Physical Review B, 1994, 49(23), 16223.
21 Baroni S, De G S, Dal C A, et al. Reviews of Modern Physics, 2001, 73(2), 515.
22 Li W, Carrete J, Katcho N A, et al. Computer Physics Communications, 2014, 185(6), 1747.
23 Maznev A A, Wright O B. American Journal of Physics, 2014, 82(11), 1062.
24 Goldsmid H J, Sharp J W. Journal of Electronic Materials, 1999, 28, 869.
25 Roya M, Alireza K. Structural Chemistry, 2014, 25, 853.
26 Patrick K S, Simon R P, Pawel K. Physical Review B, 2002, 65, 1.
27 Cheng L, Liu H J, Zhang J, et al. Physical Review B, 2014, 90(8), 085118.
[1] 韩帅文, 朱可晟, 刘长洋, 刘子良, 卞刘振, 杨礼林. 固体氧化物电池金属连接体锰钴涂层材料研究进展[J]. 材料导报, 2025, 39(8): 23100253-6.
[2] 刘宇, 张健, 庞小通, 周小杰, 卢先正, 陈小敏, 李佳豪, 彭平. 镧镍系合金对氢化镁组织结构与储氢性能的影响及机理[J]. 材料导报, 2025, 39(8): 24040039-6.
[3] 程亚杰, 许子琛, 王强, 魏浩, 孙希平, 王林. 一步法制备三维杆状聚吡咯及其吸波性能研究[J]. 材料导报, 2025, 39(8): 24010018-6.
[4] 陈旭, 廖静, 谭理, 李海进. 金属卤化物钙钛矿材料自掺杂研究进展[J]. 材料导报, 2025, 39(7): 24020097-9.
[5] 鲍艳, 谢梦爽, 郭茹月, 张婧. VO2智能调温涂层的研究进展[J]. 材料导报, 2025, 39(7): 24030036-7.
[6] 龙武剑, 唐懿, 郑淑仪, 何闯. 氮掺杂石墨烯量子点作为新型碳钢缓蚀剂:从设计到机理[J]. 材料导报, 2025, 39(7): 23100196-10.
[7] 范锡宇, 赵珍, 马剑平, 周雪琴. 多层结构绿色植被高光谱伪装材料的设计与制备[J]. 材料导报, 2025, 39(7): 24030086-8.
[8] 吴焱, 乔英杰, 白成英, 王晓东, 张晓红. 聚合物材料正热膨胀调控研究进展[J]. 材料导报, 2025, 39(7): 23120194-11.
[9] 李门, 李天鹏, 郭爱强, 刘建国, 高欣宝. vG和Cu/vG体系对H2O吸附的第一性原理研究[J]. 材料导报, 2025, 39(6): 23120052-5.
[10] 李辉, 郭文尧, 肖强强, 王梦千, 杜守勤, 李国宁, 李诗杰, 郭敏, 马晓玲. Zn掺杂ZIF-67构筑光热-相变储能一体化材料的性能研究[J]. 材料导报, 2025, 39(6): 23100236-7.
[11] 谢梦恬, 马雨龙, 孙一榕, 孙海, 许维国, 王国良, 丁建勋. 生物活性水凝胶通过调控细胞行为促进皮肤慢性创面愈合[J]. 材料导报, 2025, 39(5): 24120195-14.
[12] 赵伟馨, 彭孔浩, 武玥, 郭文, 高鹤然, 张凌燕, 彭微, 李淑荣, 孟佩俊. PEI-NaGdF4:Yb3+,Tm3+稀土掺杂上转换纳米材料的制备及性能[J]. 材料导报, 2025, 39(5): 24120175-7.
[13] 陈阿青, 梁轻. Nb掺杂二氧化钛纳米管电子结构第一性原理计算[J]. 材料导报, 2025, 39(4): 23100185-6.
[14] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[15] 刘龙鑫, 张玲, 王瑞涛, 孟腾飞, 刘芳, 谢强, 张冬海. GO/PANI复合颗粒的制备及防腐应用研究进展[J]. 材料导报, 2025, 39(10): 24040205-9.
[1] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[6] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[7] ZHAO Yanru, LIU Fangfang, WANG Lei, GUO Zilin. Modeling of the Compressive Strength of Basalt Fiber Concrete Based on Pore Structure Under Single-side Freeze-Thaw Condition[J]. Materials Reports, 2020, 34(12): 12064 -12069 .
[8] JU Dianchun, WU Zhaoyong, ZHANG Rongliang, WANG Haifeng, WANG Feng, YAN Dingliu. Study on Microwave Heating Mg/TiO2 Mixture[J]. Materials Reports, 2020, 34(Z1): 140 -143 .
[9] QUAN Guozheng, SHI Ruiju, LIU Qiao, ZHAO Jiang, ZHOU Jie, WANG Yueqiao. Analysis and Elimination of Residual Stress in Single Layer and Single Channel of Arc Fuse Accumulation[J]. Materials Reports, 2020, 34(14): 14154 -14160 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed