Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24020026-6    https://doi.org/10.11896/cldb.24020026
  无机非金属及其复合材料 |
蒸压养护制度对电石渣-花岗岩石粉基加气混凝土性能的影响
刘凤利1,*, 袁壮1, 刘俊华2, 田嘉静1, 王亚光1
1 河南大学土木建筑学院,河南 开封 475004
2 开封大学土木建筑工程学院,河南 开封 475004
Influence of Steam Pressure Curing System on the Performance of Autoclaved Aerated Concrete Containing Carbide Slag and Granite Powder
LIU Fengli1,*, YUAN Zhuang1, LIU Junhua2, TIAN Jiajing1, WANG Yaguang1
1 School of Civil Engineering and Architecture, Henan University, Kaifeng 475004, Henan, China
2 School of Civil Engineering and Architecture, Kaifeng University, Kaifeng 475004, Henan, China
下载:  全 文 ( PDF ) ( 15397KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为缓解自然资源开采压力,拓宽电石渣和花岗岩石粉等低品位固废的利用途径,以电石渣为钙质材料、花岗岩石粉为主要的硅质材料制备电石渣-花岗岩石粉基加气混凝土(CGAAC)。探讨了蒸压温度和恒温时间对CGAAC物理力学性能的影响;研究了不同蒸压养护制度与其物相组成、微观结构的关系。结果表明:蒸压温度为195 ℃、恒温时间为8 h时,所制备的CGAAC抗压强度为3.36 MPa,干密度为529.5 kg/m3;水化产物主要为托贝莫来石、C-S-H凝胶、C-S-H(I)、方解石和水石榴子石;托贝莫来石的X射线衍射峰增强;红外图谱中硅氧四面体的聚合程度增加;托贝莫来石重叠晶形由薄片状转变为板片状与C-S-H凝胶相互交织,形成了良好的网络状框架,原固废中未反应的石英和微斜长石等作为骨架,与水化产物胶结在一起,使CGAAC的微观结构更加密实。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘凤利
袁壮
刘俊华
田嘉静
王亚光
关键词:  电石渣  花岗岩石粉  蒸压加气混凝土(AAC)  蒸压养护  托贝莫来石  水化硅酸钙    
Abstract: In order to alleviate the pressure of natural resource exploitation and broaden the utilization of low-grade solid waste such as calcium slag and granite stone powder, carbide slag-granite powder based autoclaved aerated concrete (CGAAC) was prepared with calcium slag and granite stone powder as the main calcareous and silica material. The effects of autoclave temperature and constant temperature time on the physical and mechanical properties of CGAAC were explored, and the relationship between different autoclave curing regimes and the phase composition and microstructure of CGAAC was investigated. The results show that at an autoclaving temperature of 195 ℃ and a constant temperature duration of 8 hours, the prepared CGAAC exhibited a compressive strength of 3.36 MPa and a dry density of 529.5 kg/m3. The main hydration products were tobermorite, C-S-H gel, C-S-H(I), calcite and hydrogrossular. Under these conditions, the X-ray diffraction peak of tobermorite gradually intensified, the infrared spectra indicated an increased degree of polymerization of the silicate tetrahedra. The overlapping crystal shapes of tobermorite transformed from flaky to plate-like, interwoven with C-S-H gel, forming a well-networked framework. Unreacted quartz and microcline in the original solid waste, combined with the hydration products, resulted in a denser microstructure of the solid waste-based aerated concrete.
Key words:  carbide slag    granite powder    autoclaved aerated concrete    steam pressure curing    tobermorite    calcium silicate hydrate
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52304420);硅酸盐建筑材料国家重点实验室(武汉理工大学)开放基金重点项目(SYSJJ2020-01);固废资源化利用与节能建材国家重点实验室开放基金资助项目(SWR-2020-007)
通讯作者:  *刘凤利,博士,河南大学土木建筑学院副教授、硕士研究生导师。目前主要从事高性能水泥基材料、生态建筑材料等方面的研究工作。lfl@henu.edu.cn   
引用本文:    
刘凤利, 袁壮, 刘俊华, 田嘉静, 王亚光. 蒸压养护制度对电石渣-花岗岩石粉基加气混凝土性能的影响[J]. 材料导报, 2025, 39(10): 24020026-6.
LIU Fengli, YUAN Zhuang, LIU Junhua, TIAN Jiajing, WANG Yaguang. Influence of Steam Pressure Curing System on the Performance of Autoclaved Aerated Concrete Containing Carbide Slag and Granite Powder. Materials Reports, 2025, 39(10): 24020026-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020026  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24020026
1 Wu R D, Dai S B, Jian S W, et al. Journal of Cleaner Production, 2021, 278, 123416.
2 Kalpana M, Mohith S. Materials Today, Proceedings, 2020, 22, 894.
3 Karakurt C, Kurama H, Topcu I B. Cement and Concrete Composites, 2010, 32 (1), 1.
4 Jiang J, Ma B, Cai Q, et al. Construction and Building Materials, 2021, 297, 123821.
5 Ying Z G, Lei Y M, Qiao L, et al. China Powder Science and Technology, 2021, 27 (6), 105 (in Chinese).
英志刚, 雷一鸣, 乔林, 等. 中国粉体技术, 2021, 27 (6), 105.
6 Yuan B, Kai L, Ke P, et al. Journal of Materials in Civil Engineering, 2023, 35 (12), 04023456.
7 Sun D S, Yin F X, Deng Y, et al. Case Studies in Construction Materials, 2023, 19, e02354.
8 Liu M, Yang Z Z, Ding Q, et al. Bulletin of the Chinese Ceramic Society, 2016, 35 (12), 4154 (in Chinese).
刘敏, 杨赞中, 丁琪, 等. 硅酸盐通报, 2016, 35 (12), 4154.
9 Liang B R, Wang C L, Ping H Y, et al. Materials Reports, 2024, 38 (14), 23040266 (in Chinese).
梁宝瑞, 王长龙, 平浩岩, 等. 材料导报, 2024, 38 (14), 23040266.
10 Song Y M, Guo C C, Qian J S, et al. Construction and Building Materials, 2015, 83, 136.
11 Zafar S M, Javed U, Khushnood A R, et al. Construction and Building Materials, 2020, 250, 118878.
12 Zhang G Z, Ge J C, Zhang C X, et al. Materials Reports, 2021, 35 (15), 15125 (in Chinese).
张高展, 葛竞成, 张春晓, 等. 材料导报, 2021, 35(15), 15125.
13 Chen Y L, Chang J E, Lai Y C, et al. Construction and Building Materials, 2017, 153, 622.
14 Tao Y S, Wang B Z. Production of autoclaved aerated concrete blocks, China Building Materials Press, China, 2018, pp.440 (in Chinese).
陶有生, 王柏彰. 蒸压加气混凝土砌块生产, 中国建材工业出版社, 2018, pp.440.
15 Kunchariyakun K, Asavapisit S, Sombatsompop K. Cement and Concrete Composites, 2015, 55, 11.
16 Halit Y, Engin D, Bülent B. Construction and Building Materials, 2013, 42, 53.
17 Wang C L, Zhang K F, Zuo W, et al. Materials Reports, 2020, 34 (24), 24034 (in Chinese).
王长龙, 张凯帆, 左伟, 等. 材料导报, 2020, 34 (24), 24034.
18 SsauciunasR, Baltakys K. Cement and Concrete Research, 2004, 34 (11), 2029.
19 Alawad O A, Alhozaimy A, Jaafar M S, et al. International Journal of Concrete Structures and Materials, 2015, 9 (3), 381.
20 Li J, Wang Z J, Zhang K F, et al. Journal of New Materials for Electrochemical Systems, 2019, 22 (4), 231.
21 Hulya Kus, Thomas Carlsson. Cement and Concrete Research, 2003, 9(33), 1423.
22 Narayanan N, Ramamurthy K. Cement and Concrete Composites, 2000, 5(22), 321.
23 Wang C L, Ni W, Zhang S Q, et al. Construction and Building Materials, 2016, 104, 109.
24 Liang X Y, Yuan D X, Li J, et al. Romanian Journal of Materials, 2018, 48 (3), 381.
25 Yang F H, Liang X Y, Zhu Y, et al. Journal of New Materials for Electrochemical Systems, 2019, 22 (3), 159.
26 Yu P, Kirkpatrick R J, Poe B, et al. Journal of the American Ceramic Society, 2004, 82 (3), 742.
27 Mollah M Y A. Cement and Concrete Research, 2000, 30 (2), 267.
28 Fang Y H, Lu Z L, Wang Z L. Key Engineering Materials, 2011, 492, 429.
[1] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[2] 闵前燊, 辜涛, 何波, 魏仁杰, 刘川北, 张礼华, 刘来宝. 电石渣对CO2拌和水泥浆性能及固碳效能的影响[J]. 材料导报, 2024, 38(23): 23090082-6.
[3] 侯圣举, 李树国, 何超, 陈扬, 但建明, 周阳, 李相国, 吕阳. 再生微粉-电石渣制备硅酸盐水泥熟料及其水化性能研究[J]. 材料导报, 2024, 38(22): 23120044-6.
[4] 郭维超, 赵庆新, 邱永祥, 石雨轩, 王帅. 碱渣-电石渣激发混凝土的基本力学性能与应力-应变关系[J]. 材料导报, 2024, 38(17): 22070247-8.
[5] 梁宝瑞, 王长龙, 平浩岩, 刘治兵, 马锦涛, 郑永超, 荆牮霖, 齐洋, 翟玉新, 刘枫. 铅锌尾矿/电石渣基加气混凝土的组成及结构[J]. 材料导报, 2024, 38(14): 23040266-7.
[6] 马梦阳, 贺行洋, 熊光, 李欣懋, 龙勇, 王福龙. 二水磷石膏-电石渣-镍铁渣三元胶凝体系的性能与微观结构[J]. 材料导报, 2024, 38(13): 22080048-5.
[7] 唐芮枫, 张佳乐, 王子明, 崔素萍, 王肇嘉, 兰明章. C-S-H纳米晶种及其对水泥水化硬化的促进作用综述[J]. 材料导报, 2023, 37(9): 21090259-16.
[8] 王将华, 薛翠真, 张宇, 张云升, 乔宏霞, 胡向楠, 赵洋. 花岗岩石粉对砂浆干燥收缩性能的影响[J]. 材料导报, 2023, 37(22): 22050103-6.
[9] 王长龙, 赵高飞, 王永波, 张苏花, 郑永超, 霍泽坤, 王绍熙, 任真真, 邹佳一. 水库底泥和电石渣高温改性钢渣的研究[J]. 材料导报, 2022, 36(9): 21040178-7.
[10] 周玥, 朱哲誉, 徐玲琳, 王中平, 周龙. 光镊技术进展及其在水泥基材料中的应用展望[J]. 材料导报, 2022, 36(8): 20070147-7.
[11] 王旭昊, 侯鑫, 甘珑, 汪愿, 边庆华, 张久鹏. 凝灰岩石粉在复合胶凝材料中的火山灰活性及水化性能评估[J]. 材料导报, 2022, 36(16): 22040394-8.
[12] 刘新, 冯攀, 沈叙言, 王浩川, 赵立晓, 穆松, 冉千平, 缪昌文. 水泥水化产物——水化硅酸钙(C-S-H)的研究进展[J]. 材料导报, 2021, 35(9): 9157-9167.
[13] 时松, 刘长武, 吴海宽, 陈康亮. 粉煤灰-电石渣双掺改性高水充填材料物理力学性能研究[J]. 材料导报, 2021, 35(7): 7027-7032.
[14] 卢喆, 王社良, 王善伟, 姚文娟, 刘博, 闫强强. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040.
[15] 栗培龙, 裴仪, 胡晋川, 胡伟. 电石渣稳定土抗压强度影响因素及预估模型研究[J]. 材料导报, 2021, 35(22): 22092-22097.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed