Composition and Structure of Autoclaved Aerated Concrete Containing Leading-Zinc Tailings and Carbide Slag
LIANG Baorui1, WANG Changlong2,*, PING Haoyan2, LIU Zhibing2, MA Jintao2, ZHENG Yongchao3, JING Jianlin2, QI Yang2, ZHAI Yuxin4, LIU Feng5
1 Tianjin College, University of Science and Technology Beijing, Tianjin 301830, China 2 School of Civil Engineering, Hebei University of Engineering, Handan 056038, Hebei, China 3 State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Science Research, Beijing 100041, China 4 China Railway Construction Group Co., Ltd., Beijing 100040, China 5 Construction Development Co., Ltd., China Railway Construction Group, Beijing 100070, China
Abstract: For comprehensive utilization of solid wastes, the autoclaved aerated concrete (AAC) was prepared using lead-zinc tailings and carbide slag. The effect of fineness and content of lead-zinc tailings on the properties of AAC, and the phase composition, microstructure, and autoclave reaction mechanism of AAC at different curing stages were investigated by macro and micro analysis methods. The results show that the fluidity of the slurry increases and the hydration reaction speed increases as the fineness of lead-zinc tailings decreases. However, if the fineness is too small, it is easy to cause the slurry to be too thick, affecting the formation and property of good pore structure of AAC. If the content of lead-zinc tailings is too large, the accumulation of unreacted residual particles of lead-zinc tailings in the system increases, and the gap between particles decreases, which affects the growth and crystallization of hydration products, leading to a decline in the properties of AAC products. When the specific surface area of lead-zinc tailings is 420 m2/kg and its content is 63wt%, the AAC is prepared with bulk density of 590 kg/m3 and compressive strength of 4.98 MPa, which meet the requirements of A3.5, B06 level of AAC produce regulated by ‘autoclaved aerated concrete block’ (GB/T 11968-2020). The main hydration products in the body before static maintenance are C-S-H gel and AFt. And then AFt decomposes, the hydration products change to be tobermorite and C-S-H gel after static maintenance and autoclaved.
1 Sun Y, Gu X W, Xu X C. Environmental Earth Sciences, 2021, 80, 1. 2 Chen D Q, Cui Y F, Li Z H, et al. Remote Sensing, 2021, 13(9), 1775. 3 Tang Y, Lin H, Wang Y X. Bulletin of Engineering Geology and the Environment, 2021, 80, 7241. 4 Tang Z E, Deng R J, Zhang J, et al. Human and Ecological Risk Assessment, 2019, 26, 1779. 5 Zhao S J, Xia M, Yu L, et al. Construction and Building Materials, 2021, 266,120969. 6 Lei C, Yao B, Chen T, et al. Journal of Cleaner Production, 2017, 158, 73. 7 Zhu J P, Li D X, Xing F. Journal of the Chinese Ceramic Society, 2008, 36(S1), 180 (in Chinese). 朱建平, 李东旭, 邢锋.硅酸盐学报, 2008, 36(S1), 180. 8 Kanneboina Y Y, Jothi S T, Kabeer K I S A, et al. Construction and Building Materials, 2023, 36, 130314. 9 Saedi A, Jamshidi-Zanjani A, Mohseni M, et al. Construction and Buil-ding Materials, 2023, 364, 129973. 10 Zhang X G, Li L L, Hassan Q U, et al. Cement and Concrete Composites, 2020, 109, 103553. 11 Luo Z T, Guo J Y, Liu X H, et al. Construction and Building Materials, 2023, 368, 130426. 12 Lin G, Wang C L, Qiao C Y, et al. Romanian Journal of Materials, 2016, 46(3), 334. 13 Wang C L, Liu Z Y, Li J, et al. Chemical Engineering Transactions, 2017, 62, 931. 14 Li F X, Chen Y Z, Long S Z. Journal of Southwest Jiaotong University, 2008, 43(6), 810 (in Chinese). 李方贤, 陈友治, 龙世宗. 西南交通大学学报, 2008, 43(6), 810. 15 Wang C L, Zhang K F, Zuo W, et al. Materials Reports, 2020, 43(12), 24034 (in Chinese). 王长龙, 张凯帆, 左伟, 等.材料导报, 2020, 43(12), 24034. 16 Cui X W, Wang C L, Ni W, et al. Romanian Journal of Materials, 2017, 47(1), 46. 17 Li X Y, Wang C L, Zhan J Y, et al. Journal of New Materials for Electrochemical Systems, 2019, 22(4), 224. 18 Wang C L, Ni W, Zhang S Q, et al. Construction and Building Mate-rials, 2016, 104, 109. 19 Liang X Y, Yuan D X, Li J, et al. Romanian Journal of Materials, 2018, 48(3), 381. 20 Yang F H, Liang X Y, Zhu Y, et al. Journal of New Materials for Electrochemical Systems, 2019, 22(3), 159. 21 Huang X Y, Ni W, Cui W H, et al. Construction and Building Materials, 2012, 27(1), 1. 22 Institute of Solid Waste Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Environmental Standard Institute, Ministry of Ecology and Environmental of the People’s Republic of China. Identification standards for hazardous wastes-Identification for extraction toxicity, China Environmental Science Press, China, 2007 (in Chinese). 中国环境科学研究院固体废物污染控制技术研究所, 环境标准研究所. 危险废物鉴别标准 浸出毒性鉴别, 中国环境科学出版社, 2007. 23 China Building Materials Academy, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, China Construction Materials Industry Geological Survey Center, et al. Limits of radionuclides in building materials, Standards Press of China, China, 2010 (in Chinese). 中国建筑材料科学研究总院, 中国疾病预防控制中心辐射防护与核安全医学所, 中国建筑材料工业地质勘查中心, 等. 建筑材料放射性核素限量, 中国标准出版社, 2010. 24 China Aerated Concrete Association, Tongji University, Zhejiang Kaiyuan New Wall Materials Co., Ltd., et al. Autoclaved aerated concrete blocks, Standards Press of China, China, 2020 (in Chinese). 中国加气混凝土协会, 同济大学, 浙江开元新型墙体材料有限公司, 等. 蒸压加气混凝土砌块, 中国标准出版社, 2020. 25 China Aerated Concrete Association, Tongji University, Zhejiang Kaiyuan New Wall Materials Co., Ltd., et al. Testmethods of autoclaved aerated concrete, Standards Press of China, China, 2020 (in Chinese). 中国加气混凝土协会, 同济大学, 浙江开元新型墙体材料有限公司, 等.蒸压加气混凝土性能试验方法, 中国标准出版社, 2020. 26 Gu X W, Zhang W F, Zhang X L, et al. Journal of Building Enginee-ring, 2022, 45, 103459. 27 Zhao J S, Ni K, Su Y P, et al. Construction and Building Materials, 2021, 286, 122968. 28 Zhang N, Liu X M, Sun H H, et al. Journal of Hazardous Materials, 2011, 185(1), 329. 29 Wu P C, Wang C L, Zhang Y P, et al. Polish Journal of Environmental Studies, 2018, 27(3), 1323. 30 Wang S, Wang C L, Wang Q H, et al. Polish Journal of Environmental Studies, 2018, 27(1), 357. 31 Wang C L, Ren Z Z, Huo Z K, et al. Alexandria Engineering Journal, 2021, 60, 4961. 32 Cui X W, Di Y Q, Wang C L, et al. Mathematical Problems in Enginee-ring, 2021, 2021, 8468063. 33 Cui X W, Di Y Q, Wang C L, et al. Journal of Environmental Protection and Ecology, 2021, 22(6), 2379. 34 Zhang H Z, Qi Y, Jing J L, et al. Frontiers in Earth Science, 2023, 11, 1181974. 35 Wang C L, Qi Y, Jing J L, et al. Frontiers in Earth Science, 2023, 11, 1181952. 36 Wang F, Zheng Q Q, Zhang G Q, et al. Journal of New Materials for Electrochemical Systems, 2020, 23(1), 52. 37 Wang C L, Ni W, Qiao C Y, et al. Chinese Journal of Materials Research, 2013, 27(2), 157 (in Chinese). 王长龙,倪文,乔春雨,等.材料研究学报,2013, 27(2), 157. 38 Wang C L, Ni W, Yang F H, et al. Fundamental study of comprehensive utilization from iron ore tailings, China Building Materials Industry Press, China, 2015 (in Chinese). 王长龙, 倪文, 杨飞华, 等.铁尾矿综合利用基础研究, 中国建材工业出版社, 2015. 39 Wang C L, Ni W, Yang F H, et al. Research and case study on greening technology of typical metal tailings, Science Press, China, 2021 (in Chinese). 王长龙, 魏浩杰, 王肇嘉, 等.典型金属尾矿绿色化技术研究与案例分析, 科学出版社, 2021.