Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 23040266-7    https://doi.org/10.11896/cldb.23040266
  无机非金属及其复合材料 |
铅锌尾矿/电石渣基加气混凝土的组成及结构
梁宝瑞1, 王长龙2,*, 平浩岩2, 刘治兵2, 马锦涛2, 郑永超3, 荆牮霖2, 齐洋2, 翟玉新4, 刘枫5
1 北京科技大学天津学院,天津 301830
2 河北工程大学土木工程学院,河北 邯郸 056038
3 北京建筑材料科学研究总院有限公司,固废资源化利用与节能建材国家重点实验室,北京 100041
4 中铁建设集团有限公司,北京 100040
5 中铁建设集团建筑发展有限公司,北京 100070
Composition and Structure of Autoclaved Aerated Concrete Containing Leading-Zinc Tailings and Carbide Slag
LIANG Baorui1, WANG Changlong2,*, PING Haoyan2, LIU Zhibing2, MA Jintao2, ZHENG Yongchao3, JING Jianlin2, QI Yang2, ZHAI Yuxin4, LIU Feng5
1 Tianjin College, University of Science and Technology Beijing, Tianjin 301830, China
2 School of Civil Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
3 State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Science Research, Beijing 100041, China
4 China Railway Construction Group Co., Ltd., Beijing 100040, China
5 Construction Development Co., Ltd., China Railway Construction Group, Beijing 100070, China
下载:  全 文 ( PDF ) ( 4310KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了综合利用固体废弃物,以铅锌尾矿和电石渣为原料制备加气混凝土(AAC)。综合应用宏观与微观的分析方法,研究了铅锌尾矿的细度和掺量对加气混凝土性能的影响,以及不同养护阶段加气混凝土的物相组成、微观结构和蒸压反应机理。结果表明:随着铅锌尾矿细度减小,料浆的流动性提高,水化反应速度加快。但细度过小,易导致料浆过稠,影响加气混凝土良好气孔结构形成和性能;铅锌尾矿掺量过大,体系内未反应的铅锌尾矿残余颗粒堆积增多,颗粒间缝隙减小,影响了水化产物的生长和结晶,导致加气混凝土制品性能下降;当铅锌尾矿比表面积为420 m2/kg、掺量为63%(质量分数)时,加气混凝土的绝干密度和抗压强度分别为590 kg/m3、4.98 MPa,达到了《蒸压加气混凝土砌块》(GB/T 11968-2020)规定的A3.5、B06级加气混凝土合格品的要求。静停养护前加气混凝土坯体内水化产物为C-S-H凝胶和钙矾石(AFt),经静停和蒸压养护后AFt分解,主要水化产物为C-S-H凝胶和托贝莫来石。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁宝瑞
王长龙
平浩岩
刘治兵
马锦涛
郑永超
荆牮霖
齐洋
翟玉新
刘枫
关键词:  铅锌尾矿  电石渣  加气混凝土  静停养护  托贝莫来石    
Abstract: For comprehensive utilization of solid wastes, the autoclaved aerated concrete (AAC) was prepared using lead-zinc tailings and carbide slag. The effect of fineness and content of lead-zinc tailings on the properties of AAC, and the phase composition, microstructure, and autoclave reaction mechanism of AAC at different curing stages were investigated by macro and micro analysis methods. The results show that the fluidity of the slurry increases and the hydration reaction speed increases as the fineness of lead-zinc tailings decreases. However, if the fineness is too small, it is easy to cause the slurry to be too thick, affecting the formation and property of good pore structure of AAC. If the content of lead-zinc tailings is too large, the accumulation of unreacted residual particles of lead-zinc tailings in the system increases, and the gap between particles decreases, which affects the growth and crystallization of hydration products, leading to a decline in the properties of AAC products. When the specific surface area of lead-zinc tailings is 420 m2/kg and its content is 63wt%, the AAC is prepared with bulk density of 590 kg/m3 and compressive strength of 4.98 MPa, which meet the requirements of A3.5, B06 level of AAC produce regulated by ‘autoclaved aerated concrete block’ (GB/T 11968-2020). The main hydration products in the body before static maintenance are C-S-H gel and AFt. And then AFt decomposes, the hydration products change to be tobermorite and C-S-H gel after static maintenance and autoclaved.
Key words:  lead-zinc tailings    carbide slag    autoclaved aerated concrete    static maintenance    tobermorite
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  TU522  
基金资助: 国家重点研发计划(2021YFC1910605);河北省自然科学基金(E2020402079);河北省科技重大专项项目(21283804Z);固废资源化利用与节能国家重点实验室开放基金(SWR-2023-007);国家环境保护矿冶资源利用与污染控制重点实验室开放基金(HB202306);中铁建设集团有限公司科技研发计划(22-14b;22-11b)
通讯作者:  * 王长龙,河北工程大学教授、博士研究生导师。2014年1月毕业于北京科技大学,获得矿业工程专业博士学位。长期从事新型建筑材料、矿物材料及复杂共生矿产资源综合利用研究。在国内外重要期刊发表文章100多篇,授权发明专利12项,出版专著4部。baistuwong@139.com   
作者简介:  梁宝瑞,北京科技大学天津学院副教授。2014年1月毕业于北京科技大学,获得环境工程专业博士学位。长期从事环境功能材料及工业固废资源化综合利用研究。在国内外重要期刊发表文章30多篇,授权专利10余项。
引用本文:    
梁宝瑞, 王长龙, 平浩岩, 刘治兵, 马锦涛, 郑永超, 荆牮霖, 齐洋, 翟玉新, 刘枫. 铅锌尾矿/电石渣基加气混凝土的组成及结构[J]. 材料导报, 2024, 38(14): 23040266-7.
LIANG Baorui, WANG Changlong, PING Haoyan, LIU Zhibing, MA Jintao, ZHENG Yongchao, JING Jianlin, QI Yang, ZHAI Yuxin, LIU Feng. Composition and Structure of Autoclaved Aerated Concrete Containing Leading-Zinc Tailings and Carbide Slag. Materials Reports, 2024, 38(14): 23040266-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040266  或          http://www.mater-rep.com/CN/Y2024/V38/I14/23040266
1 Sun Y, Gu X W, Xu X C. Environmental Earth Sciences, 2021, 80, 1.
2 Chen D Q, Cui Y F, Li Z H, et al. Remote Sensing, 2021, 13(9), 1775.
3 Tang Y, Lin H, Wang Y X. Bulletin of Engineering Geology and the Environment, 2021, 80, 7241.
4 Tang Z E, Deng R J, Zhang J, et al. Human and Ecological Risk Assessment, 2019, 26, 1779.
5 Zhao S J, Xia M, Yu L, et al. Construction and Building Materials, 2021, 266,120969.
6 Lei C, Yao B, Chen T, et al. Journal of Cleaner Production, 2017, 158, 73.
7 Zhu J P, Li D X, Xing F. Journal of the Chinese Ceramic Society, 2008, 36(S1), 180 (in Chinese).
朱建平, 李东旭, 邢锋.硅酸盐学报, 2008, 36(S1), 180.
8 Kanneboina Y Y, Jothi S T, Kabeer K I S A, et al. Construction and Building Materials, 2023, 36, 130314.
9 Saedi A, Jamshidi-Zanjani A, Mohseni M, et al. Construction and Buil-ding Materials, 2023, 364, 129973.
10 Zhang X G, Li L L, Hassan Q U, et al. Cement and Concrete Composites, 2020, 109, 103553.
11 Luo Z T, Guo J Y, Liu X H, et al. Construction and Building Materials, 2023, 368, 130426.
12 Lin G, Wang C L, Qiao C Y, et al. Romanian Journal of Materials, 2016, 46(3), 334.
13 Wang C L, Liu Z Y, Li J, et al. Chemical Engineering Transactions, 2017, 62, 931.
14 Li F X, Chen Y Z, Long S Z. Journal of Southwest Jiaotong University, 2008, 43(6), 810 (in Chinese).
李方贤, 陈友治, 龙世宗. 西南交通大学学报, 2008, 43(6), 810.
15 Wang C L, Zhang K F, Zuo W, et al. Materials Reports, 2020, 43(12), 24034 (in Chinese).
王长龙, 张凯帆, 左伟, 等.材料导报, 2020, 43(12), 24034.
16 Cui X W, Wang C L, Ni W, et al. Romanian Journal of Materials, 2017, 47(1), 46.
17 Li X Y, Wang C L, Zhan J Y, et al. Journal of New Materials for Electrochemical Systems, 2019, 22(4), 224.
18 Wang C L, Ni W, Zhang S Q, et al. Construction and Building Mate-rials, 2016, 104, 109.
19 Liang X Y, Yuan D X, Li J, et al. Romanian Journal of Materials, 2018, 48(3), 381.
20 Yang F H, Liang X Y, Zhu Y, et al. Journal of New Materials for Electrochemical Systems, 2019, 22(3), 159.
21 Huang X Y, Ni W, Cui W H, et al. Construction and Building Materials, 2012, 27(1), 1.
22 Institute of Solid Waste Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Environmental Standard Institute, Ministry of Ecology and Environmental of the People’s Republic of China. Identification standards for hazardous wastes-Identification for extraction toxicity, China Environmental Science Press, China, 2007 (in Chinese).
中国环境科学研究院固体废物污染控制技术研究所, 环境标准研究所. 危险废物鉴别标准 浸出毒性鉴别, 中国环境科学出版社, 2007.
23 China Building Materials Academy, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, China Construction Materials Industry Geological Survey Center, et al. Limits of radionuclides in building materials, Standards Press of China, China, 2010 (in Chinese).
中国建筑材料科学研究总院, 中国疾病预防控制中心辐射防护与核安全医学所, 中国建筑材料工业地质勘查中心, 等. 建筑材料放射性核素限量, 中国标准出版社, 2010.
24 China Aerated Concrete Association, Tongji University, Zhejiang Kaiyuan New Wall Materials Co., Ltd., et al. Autoclaved aerated concrete blocks, Standards Press of China, China, 2020 (in Chinese).
中国加气混凝土协会, 同济大学, 浙江开元新型墙体材料有限公司, 等. 蒸压加气混凝土砌块, 中国标准出版社, 2020.
25 China Aerated Concrete Association, Tongji University, Zhejiang Kaiyuan New Wall Materials Co., Ltd., et al. Testmethods of autoclaved aerated concrete, Standards Press of China, China, 2020 (in Chinese).
中国加气混凝土协会, 同济大学, 浙江开元新型墙体材料有限公司, 等.蒸压加气混凝土性能试验方法, 中国标准出版社, 2020.
26 Gu X W, Zhang W F, Zhang X L, et al. Journal of Building Enginee-ring, 2022, 45, 103459.
27 Zhao J S, Ni K, Su Y P, et al. Construction and Building Materials, 2021, 286, 122968.
28 Zhang N, Liu X M, Sun H H, et al. Journal of Hazardous Materials, 2011, 185(1), 329.
29 Wu P C, Wang C L, Zhang Y P, et al. Polish Journal of Environmental Studies, 2018, 27(3), 1323.
30 Wang S, Wang C L, Wang Q H, et al. Polish Journal of Environmental Studies, 2018, 27(1), 357.
31 Wang C L, Ren Z Z, Huo Z K, et al. Alexandria Engineering Journal, 2021, 60, 4961.
32 Cui X W, Di Y Q, Wang C L, et al. Mathematical Problems in Enginee-ring, 2021, 2021, 8468063.
33 Cui X W, Di Y Q, Wang C L, et al. Journal of Environmental Protection and Ecology, 2021, 22(6), 2379.
34 Zhang H Z, Qi Y, Jing J L, et al. Frontiers in Earth Science, 2023, 11, 1181974.
35 Wang C L, Qi Y, Jing J L, et al. Frontiers in Earth Science, 2023, 11, 1181952.
36 Wang F, Zheng Q Q, Zhang G Q, et al. Journal of New Materials for Electrochemical Systems, 2020, 23(1), 52.
37 Wang C L, Ni W, Qiao C Y, et al. Chinese Journal of Materials Research, 2013, 27(2), 157 (in Chinese).
王长龙,倪文,乔春雨,等.材料研究学报,2013, 27(2), 157.
38 Wang C L, Ni W, Yang F H, et al. Fundamental study of comprehensive utilization from iron ore tailings, China Building Materials Industry Press, China, 2015 (in Chinese).
王长龙, 倪文, 杨飞华, 等.铁尾矿综合利用基础研究, 中国建材工业出版社, 2015.
39 Wang C L, Ni W, Yang F H, et al. Research and case study on greening technology of typical metal tailings, Science Press, China, 2021 (in Chinese).
王长龙, 魏浩杰, 王肇嘉, 等.典型金属尾矿绿色化技术研究与案例分析, 科学出版社, 2021.
[1] 马梦阳, 贺行洋, 熊光, 李欣懋, 龙勇, 王福龙. 二水磷石膏-电石渣-镍铁渣三元胶凝体系的性能与微观结构[J]. 材料导报, 2024, 38(13): 22080048-5.
[2] 陈永亮, 成亮, 陈铁军, 陈君宝, 张轶轲, 夏加庚. 砖混建筑垃圾制备蒸压加气混凝土性能及水化机理[J]. 材料导报, 2024, 38(12): 22060287-6.
[3] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[4] 王长龙, 赵高飞, 王永波, 张苏花, 郑永超, 霍泽坤, 王绍熙, 任真真, 邹佳一. 水库底泥和电石渣高温改性钢渣的研究[J]. 材料导报, 2022, 36(9): 21040178-7.
[5] 梁晓前, 黄榜彪, 黄秉章, 杨雷铭, 孙文贤, 林通敏, 任志强, 李有的, 刘灏. 基于孔结构的蒸压加气混凝土的冻融循环耐久性试验研究[J]. 材料导报, 2021, 35(z2): 200-204.
[6] 时松, 刘长武, 吴海宽, 陈康亮. 粉煤灰-电石渣双掺改性高水充填材料物理力学性能研究[J]. 材料导报, 2021, 35(7): 7027-7032.
[7] 栗培龙, 裴仪, 胡晋川, 胡伟. 电石渣稳定土抗压强度影响因素及预估模型研究[J]. 材料导报, 2021, 35(22): 22092-22097.
[8] 王长龙, 张凯帆, 左伟, 叶鹏飞, 赵高飞, 任真真, 林庚. 煤矸石粉煤灰加气混凝土的制备及性能[J]. 材料导报, 2020, 34(24): 24034-24039.
[9] 任国宏, 廖洪强, 程芳琴, 闫志华. 发泡混凝土碱浸试块碳酸化增强固碳特性研究[J]. 材料导报, 2019, 33(Z2): 300-303.
[10] 任国宏, 廖洪强, 高宏宇, 闫志华, 程芳琴. 粉煤灰-电石渣制浆矿化的固碳增强特性[J]. 材料导报, 2019, 33(21): 3556-3560.
[11] 苏英, 邱慧琼, 贺行洋, 杨进, 王迎斌, 曾三海, Bohumír Strnadel. 弱碱激发超细粉煤灰水化产物结构分析[J]. 材料导报, 2019, 33(14): 2376-2380.
[12] 王亚丽, 陈美娜, 崔素萍, 马晓宇. 稻壳灰-电石渣复合吸收剂的脱硫脱硝性能[J]. 材料导报, 2018, 32(22): 3995-3999.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed