Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 23050046-11    https://doi.org/10.11896/cldb.23050046
  无机非金属及其复合材料 |
基于碳纳米管及其复合材料的柔性应变传感器研究进展
张永芳1, 文镜茜1, 董丽虹2,*, 王海斗3,*, 郭伟玲2, 黄艳斐2
1 西安理工大学印刷包装与数字媒体学院,西安 710054
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
3 陆军装甲兵学院机械产品再制造国家工程研究中心,北京 100072
Research Progress of High Performance Strain Sensors Based on Carbon Nanotubes and Their Composite
ZHANG Yongfang1, WEN Jingqian1, DONG Lihong2,*, WANG Haidou3,*, GUO Weiling2, HUANG Yanfei2
1 School of Printing, Packaging and Digital Media, Xi'an University of Technology, Xi'an 710054, China
2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
3 National Engineering Research Center for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 12197KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 压阻式应变传感器常被用于监测结构部位的变形状况,通过将捕获到的机械信号转变为电信号,从而实现对应变的监测。考虑到监测对象的结构和实际应用,压阻式应变传感器需要具备一定的柔性,以此实现弯曲或可拉伸界面的应变监测,为制备出对应变敏感度高、耐用性强、不易损坏且能够在承受多次循环负载后依然具备良好性能的应变传感器,近年来导电层所使用的传感材料成为研究热点。碳纳米管具有特殊的性质并且与金属导电材料银、铜等或碳系导电材料中的石墨烯、炭黑等相互掺杂有显著的增强效果,因此在制备高性能的柔性应变传感器中有着巨大的潜力。本文综述了近年来为了提高应变传感性能而使用碳纳米管及其复合材料所制备的柔性应变传感器的研究现状,介绍了相关应变传感机制以及碳纳米管基应变传感器在各领域的应用,并讨论了碳纳米管基柔性应变传感器所面临的挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张永芳
文镜茜
董丽虹
王海斗
郭伟玲
黄艳斐
关键词:  碳纳米管  复合材料  应变传感器  高性能  传感机制    
Abstract: Piezoresistive strain sensors are often used to monitor structural deformation by converting captured mechanicalsignals into electrical ones. Considering the structure and practical application of the monitoring object, the piezoresistive strain sensor needs to have certain flexibility, so as to realize the strain monitoring of the bending or tensile interface, in order to prepare a strain sensor with high strain sensitivity, strong durability, non-easy damage and good performance after enduring many cycles of load, in recent years, the sensing materials used in the conductive layer are the research hotspot. Carbon nanotubes (CNTs) have special properties and can be enhanced by doping with metal conductive materials such as silver, copper or carbon black in carbon conductive materials, therefore, it has great potential in the preparation of high-performance flexible strain sensors. In this paper, the research status of flexible strain sensors made of carbon nanotubes and their composites in order to improve the strain sensing performance is reviewed, the related strain sensing mechanism and the applications of carbon nanotube-based strain sensors in various fields are introduced, and the challenges faced by carbon nanotube-based flexible strain sensors are discussed.
Key words:  carbon nanotube    composite material    strain sensor    high performance    sensing mechanism
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  TB383  
基金资助: 国家重大项目(2021-JCJQ-ZD-302);国家自然科学基金(52175206;52130509)
通讯作者:  * 董丽虹,陆军装甲兵学院装备再制造技术国防科技重点实验室副研究员、博士研究生导师。目前主要研究领域为无损检测与再制造寿命预测。lihong.dong@126.com
王海斗,陆军装甲兵学院机械装备再制造工程中心研究员、博士研究生导师。目前主要从事表面工程、再制造和摩擦学研究。wanghaidou@aliyun.com   
作者简介:  张永芳,西安理工大学印刷包装与数字媒体学院教授、博士研究生导师。1998年6月本科毕业于甘肃工业大学机电工程学院,2007年11月在西北工业大学电子信息学院获得博士学位,2012年在国家留学基金委项目资助下于美国密歇根州立大学访问研究。近年来先后主持国家自然科学基金、陕西省自然科学基金和国家重点实验室开放课题等各类纵横向科研项目20余项。发表论文40余篇,其中SCI和EI检索论文30余篇。
引用本文:    
张永芳, 文镜茜, 董丽虹, 王海斗, 郭伟玲, 黄艳斐. 基于碳纳米管及其复合材料的柔性应变传感器研究进展[J]. 材料导报, 2024, 38(14): 23050046-11.
ZHANG Yongfang, WEN Jingqian, DONG Lihong, WANG Haidou, GUO Weiling, HUANG Yanfei. Research Progress of High Performance Strain Sensors Based on Carbon Nanotubes and Their Composite. Materials Reports, 2024, 38(14): 23050046-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050046  或          http://www.mater-rep.com/CN/Y2024/V38/I14/23050046
1 Shintake J, Cacucciolo V, Floreano D, et al. Advanced Materials, 2018, 30(29), 1707035.
2 Li T, Li Y, Zhang T. Accounts of Chemical Research, 2019, 52(2), 288.
3 Souri H, Banerjee H, Jusufi A, et al. Advanced Intelligent Systems, 2020, 2(8), 2000039.
4 Meng K, Xiao X, Wei W, et al. Advanced Materials, 2022, 34(21), 2109357.
5 Abramson A, Chan C T, Khan Y, et al. Science Advances, 2022, 8(37), eabn6550.
6 Yang J C, Mun J, Kwon S Y, et al. Advanced Materials, 2019, 31(48), 1904765.
7 Shih B, Shah D, Li J, et al. Science Robotics, 2020, 5(41), eaaz9239.
8 Gao K, Zhang Z, Weng S, et al. Applied Sciences, 2022, 12(19), 9750.
9 Souri H, Banerjee H, Jusufi A, et al. Advanced Intelligent Systems, 2020, 2(8), 2000039.
10 Ji Zhe, Liu Xidie, Lyu Shurui, et al. Journal of China Papermaking, 2021, 40 (12), 97(in Chinese).
吉喆, 刘玺蝶, 吕姝叡, 等. 中国造纸, 2021, 40(12), 97.
11 Chen J, Zheng J, Gao Q, et al. Applied Sciences, 2018, 8(3), 345.
12 Madhavan R. Journal of Materials Science: Materials in Electronics, 2022, 33(7), 3465.
13 Li Q, Luo S, Wang Y, et al. Sensors and Actuators A: Physical, 2019, 300, 111664.
14 Zhang X, Xiang D, Zhu W, et al. Composites Science and Technology, 2020, 200, 108437.
15 Soe H M, Manaf A A, Matsuda A, et al. Journal of Materials Science: Materials in Electronics, 2020, 31(14), 11897.
16 Wang L, Chen Y, Lin L, et al. Chemical Engineering Journal, 2019, 362, 89.
17 Zhao S, Li J, Cao D, et al. ACS Applied Materials & Interfaces, 2017, 9(14), 12147.
18 Sun S, Guo L, Chang X, et al. Journal of Materials Science, 2019, 54(9), 7048.
19 Arun H. AEU-International Journal of Electronics and Communications, 2021, 136, 153753.
20 Xiang D, Zhang X, Harkin-Jones E, et al. Composites Part A: Applied Science and Manufacturing, 2020, 129, 105730.
21 Haghgoo M, Ansari R, Hassanzadeh-Aghdam M K. The European Physical Journal Plus, 2021, 136(7), 1.
22 Kang I, Schulz M J, Kim J H, et al. Smart Materials and Structures, 2006, 15(3), 737.
23 Kao H L, Cho C L, Chang L C, et al. Coatings, 2020, 10(8), 792.
24 Wang R, Sun L, Zhu X, et al. Advanced Materials Technologies, 2023, 8(1), 2200855.
25 Shi J, Li X, Cheng H, et al. Advanced Functional Materials, 2016, 26(13), 2078.
26 Mampallil D, Eral H B. Advances in Colloid and Interface Science, 2018, 252, 38.
27 Chen C B, Kao H L, Chang L C, et al. ECS Journal of Solid State Science and Technology, 2021, 10(12), 121001.
28 Ghavidel A K, Zadshakoyan M, Kiani G, et al. Optics and Lasers in Engineering, 2023, 161, 107325.
29 Ryu C, Park J, Jung S I, et al. Chemosensors, 2022, 10(5), 187.
30 Lee J, Pyo S, Kwon D S, et al. Small, 2019, 15(12), 1805120.
31 Zhou X, Luo J, Zhang J, et al. Nanotechnology Reviews, 2022, 11(1), 2050.
32 Kang B H, Jeong I Y, Park S H. Polymers, 2022, 14(13), 2551.
33 Suk M E. Molecules, 2021, 26(13), 3947.
34 Hu N, Karube Y, Arai M, et al. Carbon, 2010, 48(3), 680.
35 Tran Hoang P, Salazar N, Porkka T N, et al. Nanoscale Research Letters, 2016, 11(1), 1.
36 Zhang Q, Liu L, Zhao D, et al. Nanomaterials, 2017, 7(12), 424.
37 Pei Z, Liu Y, Zhang Q, et al. Advanced Electronic Materials, 2019, 5(7), 1900227.
38 Karimov K S, Chani M T S, Khalid F A, et al. Physica E: Low-dimensional Systems and Nanostructures, 2012, 44(4), 778.
39 Zhao D, Zhang Q, Liu Y, et al. Applied Nanoscience, 2019, 9(7), 1469.
40 Li Xinyan. Iron nanowire based flexible structure and performance study of tensile strain sensor. Master's Thesis, Chongqing University of Posts and Telecommunications, 2020 (in Chinese).
李欣晏. 基于铁纳米线的柔性拉伸应变传感器的构筑及性能研究. 硕士学位论文, 重庆邮电大学, 2020.
41 Jang D, Yoon H N, Nam I W, et al. Composite Structures, 2020, 244, 112260.
42 Zhang Y, Sheehan C J, Zhai J, et al. Advanced Materials, 2010, 22(28), 3027.
43 Park S, Ruoff R S. Nature Nanotechnology, 2009, 4(4), 217.
44 Li Y, Ai Q, Mao L, et al. Scientific Reports, 2021, 11(1), 1.
45 Xiang D, Zhang X, Han Z, et al. Journal of Materials Science, 2020, 55(33), 15769.
46 Zheng Y, Li Y, Dai K, et al. Composites Science and Technology, 2018, 156, 276.
47 Go M, Qi X, Matteini P, et al. Sensors and Actuators A: Physical, 2021, 332, 113098.
48 Huang L, Chen J, Xu Y, et al. Applied Surface Science, 2021, 548, 149268.
49 Yin F, Ye D, Zhu C, et al. Sensors, 2017, 17(11), 2677.
50 Liu S L, Feng H X, Zhang J Q, et al. Journal of Applied Chemical Industry, 2010, 39(7), 1074(in Chinese).
刘生丽, 冯辉霞, 张建强, 等. 应用化工, 2010, 39(7), 1074.
51 Huang Yun. Journal of Functional Polymer, 1989, 2 (1), 73(in Chinese).
黄畇. 功能高分子学报, 1989, 2(1), 73.
52 Miao Y, Yang Q, Chen L, et al. Applied Physics Letters, 2012, 101(6), 063120.
53 Gong S, Zhu Z H, Li J, et al. Journal of Applied Physics, 2014, 116(19), 194306.
54 Li J, Ma P C, Chow W S, et al. Advanced Functional Materials, 2007, 17(16), 3207.
55 Rittigstein P, Torkelson J M. Journal of Polymer Science Part B: Polymer Physics, 2006, 44(20), 2935.
56 Zare Y, Rhee K Y. Polymers, 2020, 12(1), 114.
57 Zare Y, Rhee K Y. Composites Science and Technology, 2018, 155, 252.
58 Hu N, Karube Y, Yan C, et al. Acta Materialia, 2008, 56(13), 2929.
59 Zare Y, Rhee K Y. Journal of Materials Science, 2020, 55(13), 5471.
60 Zhou P, Yao J, Wei C, et al. Bioinspiration & Biomimetics, 2022, 17(4), 046016.
61 Hu X, Yang F, Wu M, et al. Advanced Materials Technologies, 2022, 7(3), 2100769.
62 Mousavi S, Howard D, Zhang F, et al. ACS Applied Materials & Interfaces, 2020, 12(13), 15631.
63 Wang Y, Qin W, Hu X, et al. Sensors and Actuators B: Chemical, 2022, 368,132228.
64 Goldoni R, Ozkan-Aydin Y, Kim Y S, et al. ACS Applied Materials & Interfaces, 2020, 12(39), 43388.
65 Caizzone S, DiGiampaolo E. IEEE Sensors Journal, 2015, 15(12), 6767.
66 Zerbst U, Madia M, Klinger C, et al. Engineering Failure Analysis, 2019, 97, 759.
67 Liu C, Teng J, Wu N. Shock and Vibration, 2015, 2015(1),740471.
68 Wang Zongpeng, Luan Yunfei, Li Xin. Sichuan Cement, 2023(1), 31. (in Chinese)
王宗鹏,栾云斐,李鑫. 四川水泥,2023(1),31.
69 Ferreira P M, Machado M A, Carvalho M S, et al. Sensors, 2022, 22(21), 8320.
70 Saafi M. Nanotechnology, 2009, 20(39), 395502.
71 Xin X, Qiu Z, Luan X, et al. IEEE Sensors Journal, 2022, 22(5), 3945.
72 Castañeda-Saldarriaga D L, Alvarez-Montoya J, Martínez-Tejada V, et al. International Journal of Concrete Structures and Materials, 2021, 15(1), 1.
73 Rao R K, Sasmal S. Sensors and Actuators A: Physical, 2020, 311, 112088.
74 Dey S, Bhattacharyya R, Sarma S E, et al. IEEE Internet of Things Journal, 2020, 8(5), 3955.
75 Li J, Feng G, Wei W, et al. IEEE Internet of Things Journal, 2018, 5(6), 4632.
76 Benchirouf A, Sowade E, Al-Hamry A, et al.In: International Multi-Conference on Systems, Signals & Devices. Chemnitz, Germany, 2012, pp. 1.
77 Min S H, Kim H J, Quan Y J, et al. Sensors and Actuators A: Physical, 2020, 313, 112224.
78 Michelis F, Bodelot L, Laheurte J M, et al.In: Nanotechnology in Construction. Germany, 2015,pp.389.
79 Du J, Wang L, Shi Y, et al. Sensors, 2020, 20(16), 4523.
80 Kim K, Lee J, Jo E, et al. ACS Applied Nano Materials, 2020, 3(11), 11408.
81 Wang L, Dou W, Chen J, et al. Materials Science and Engineering: C, 2020, 117, 111345.
82 Vilkomerson D, Chilipka T. In: IEEE Ultrasonics Symposium. Montreal. QC, Canada, 2004, pp. 461.
83 Santos A, Amorim L, Nunes J P, et al. Sensors and Actuators A: Physical, 2019, 289, 157.
[1] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[2] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[3] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[4] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[5] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[6] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[7] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[8] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[9] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[10] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[11] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[12] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[13] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[14] 陈悦, 黄静, 朱子旭, 李华东. 面芯脱粘缺陷对复合材料夹芯圆柱壳屈曲特性影响分析[J]. 材料导报, 2024, 38(5): 23070044-6.
[15] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed