Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 23050050-7    https://doi.org/10.11896/cldb.23050050
  无机非金属及其复合材料 |
洁净金属冶炼用CaO材料的防水化措施及作用机理
顾强1,2, 马渭奎1,2, 钱凡1,2, 刘国齐1,2,*, 李红霞1,2,*
1 中钢集团洛阳耐火材料研究院有限公司, 先进耐火材料国家重点实验室,河南 洛阳 471039
2 有色金属新材料与先进加工技术省部共建协同创新中心,河南 洛阳 471023
Anti-hydration Measures and Mechanism of CaO Material for Clean Metal Smelting
GU Qiang1,2, MA Weikui1,2, QIAN Fan1,2, LIU Guoqi1,2,*, LI Hongxia1,2,*
1 State Key Laboratory of Advanced Refractories, Sinosteel Luoyang Institute of Refractories Research Co., Ltd., Luoyang 471039, Henan, China
2 Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023, Henan, China
下载:  全 文 ( PDF ) ( 6793KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 CaO是冶炼洁净金属最具潜力的耐火材料,其运用可推动我国高端制造业的高质量发展,然而易水化是其推广应用的主要限制性因素。本文综述了提高CaO材料水化性能的措施,包括高温煅烧法、添加剂法和表面处理法等,并对其作用机理进行分析和作用效果进行评价,最后指出,采用多方式协同将成为提高CaO抗水化性的重要方向,以及从晶体结构入手才能从根本上解决CaO易水化问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
顾强
马渭奎
钱凡
刘国齐
李红霞
关键词:  CaO  水化  高温烧结  添加剂  表面包覆    
Abstract: CaO is the most promising refractories for clean metal smelting. Its application can promote the high-quality development of China's high-end manufacturing industry. However, easy hydration is the main limiting factor for its application. This article reviews the measures to improve the hydration properties of CaO materials, including high temperature calcination method, additive method, and surface treatment method, and analyzes their mechanism and evaluates their effect. Finally, it is pointed out that the use of multi-method synergy would become an important direction to improve the hydration resistance of CaO, and starting from the crystal structure can fundamentally solve the problem of easy hydration of CaO.
Key words:  CaO    hydration    high temperature sintering    additives    surface coating
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  TQ175  
基金资助: 国家自然科学基金(51932008);中原科技创新领军人才(204200510011)
通讯作者:  * 刘国齐,工学博士,中钢集团洛阳耐火材料研究院高级技术专家、正高级工程师、硕士研究生导师。1997年河北理工学院无机非金属专业本科毕业,2000年洛阳耐火材料研究院无机非金属材料专业硕士毕业后在该院工作至今,2006年北京科技大学材料学专业博士毕业,目前主要从事功能耐火材料等方面的研究。主持或参与了多项省部级以上科研课题的研究开发工作,获国家技术发明二等奖(排名第3)1项,在Ceramic International、Journal of Alloy and Compounds、《耐火材料》等期刊上发表学术论文100余篇,授权发明专利18件,主持修订《连铸用功能耐火制品》标准,获国务院政府特殊津贴。liugq@lirrc.com
李红霞,工学博士,正高级工程师,博士研究生导师,中国宝武首席科学家、先进耐火材料国家重点实验室主任、中国金属学会常务理事、全国耐火材料标准化委员会主任委员、“新世纪百千万人才工程”国家级人选等。1987年和1990年在天津大学分别获技术陶瓷专业学士学位和无机非金属材料专业硕士学位,1994年在中国科学院上海硅酸盐研究所无机非金属材料专业获博士学位,期间在美国密西根大学学习。长期围绕冶金产品高端化和绿色制造新技术开展先进耐火材料研究,主持国家级项目21项,获国家技术发明二等奖1项(排名第1)、省部科技进步一等奖5项(三项排名第1),制定国际标准2项,授权发明专利60件,发表论文321篇,出版专著6部,多次编制行业发展规划和技术路线图等。lihongx0622@126.com   
作者简介:  顾强,工学博士,中钢集团洛阳耐火材料研究院有限公司工程师。2015年7月于华北水利水电大学获得工学学士学位,2018年7月于郑州大学获得工学硕士学位,2022年12月于郑州大学获得工学博士学位。目前主要从事功能耐火材料等方面的研究。在Ceramic International、Journal of Alloy and Compounds、ISIJ International、《材料导报》《硅酸盐学报》等期刊发表论文20余篇,授权专利1件。
引用本文:    
顾强, 马渭奎, 钱凡, 刘国齐, 李红霞. 洁净金属冶炼用CaO材料的防水化措施及作用机理[J]. 材料导报, 2024, 38(14): 23050050-7.
GU Qiang, MA Weikui, QIAN Fan, LIU Guoqi, LI Hongxia. Anti-hydration Measures and Mechanism of CaO Material for Clean Metal Smelting. Materials Reports, 2024, 38(14): 23050050-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050050  或          http://www.mater-rep.com/CN/Y2024/V38/I14/23050050
1 Xiao G H, Dong H, Wang M Q, et al. Materials for Mechanical Enginee-ring, 2010, 34(11), 14 (in Chinese).
肖国华, 董瀚, 王毛球, 等. 机械工程材料, 2010, 34(11), 14.
2 Spriestersbach D, Grad P, Kerscher E. International Journal of Fatigue, 2014, 64,114.
3 Mirjam B L, Robert T D. Engineering Failure Analysis, 2013, 33, 430.
4 Sun C Q, Lei Z Q, Xie J J, et al. International Journal of Fatigue, 2013, 48, 19.
5 Feng W, Liu W J. Physics Examination and Testing, 2015,33(6), 49 (in Chinese).
冯文博, 刘文玖. 物理测试, 2015, 33(6), 49.
6 Zhang C F. Metallurgy and Materials, 2020, 40(4), 2 (in Chinese).
张春富. 冶金与材料, 2020, 40(4), 2.
7 Fu J, Wang P, Xu J H, et al. Special Steel, 1998, 19(6), 31 (in Chinese).
傅杰, 王平, 徐君浩, 等. 特殊钢, 1998, 19(6), 31.
8 Gong W. Control of oxygen content and non-metallic inclusionsin conti-nuous casting bearing steels. Ph.D. Thesis, Northeastern University, China, 2006 (in Chinese).
龚伟.连铸轴承钢氧含量和夹杂物控制研究. 博士学位论文, 东北大学, 2006.
9 Wang J M, Yang S Y. Nickel-base cast superalloy, Metallurgical Industry Press, China, 2014, pp.136 (in Chinese).
王建明, 杨舒宇. 镍基铸造高温合金, 冶金工业出版社, 2014, pp.136.
10 Zhong X C. Refractories, 2003, 37(1), 1 (in Chinese).
钟香崇. 耐火材料, 2003, 37(1), 1.
11 Jones J A T, Bowman B, Lefrank P A. The Making, Shaping and Treating of Steel, 1998, 1, 525.
12 Wang C X, Qin Y J. Refractories for secondary refining vessels, Metallurgical Industry Press, China, 1996, pp.137 (in Chinese).
王诚训,亲永杰. 炉外精炼用耐火材料, 冶金工业出版社, 1996, pp.137.
13 Wang X D, Chen S J, Zhang H Y, et al. Refractories, 2004, 38(2), 88 (in Chinese).
王学达, 陈树江, 张红鹰, 等. 耐火材料, 2004, 38(2), 88.
14 Sundin S. Metal Powder Report, 2007, 62(5), 8.
15 Soltanieh M , Payandeh Y. Journal of Iron and Steel Research Internatio-nal, 2005, 12(5), 7.
16 Wang M M,Yang Y H, Wang D H, et al. Rare Metal Materials and Engineering, 2018, 47(12),156 (in Chinese).
王慢慢, 杨彦红, 王道红, 等. 稀有金属材料与工程, 2018, 47(12),156.
17 Harkki J, Rytila R, Palander M, et al. Scandinavian Journal of Metallurgy, 1990, 19, 116.
18 Harkki J, Palander M. Interceram, 1991, 40(5), 284.
19 Salman G K, Ali N, Aziz S, et al. Ceramics International, 2016, 42(10), 12270.
20 Li Z, Zhang S, Lee W E. International Materials Reviews, 2008, 53(1), 1.
21 Grasa G S, Abanades J C, Alonso M, et al. Chemical Engineering Journal, 2008, 137(3), 561.
22 Li H X. Refractory handbook, Metallurgical Industry Press, China, 2007, pp.289 (in Chinese).
李红霞. 耐火材料手册, 冶金工业出版社, 2007, pp.289.
23 Bhattacharya T K, Ghosh A, Das S K. Ceramics International, 2001, 27(4), 455.
24 Glasson D R. Journal of Applied Chemistry, 1958, 8(12), 793.
25 Maciel-Camacho A, Hernandez H R, Awd H, et al. ISIJ International, 1997, 37(5), 468.
26 Shi H, Zhao Y, Li W. Cement and Concrete Research, 2002, 32(5), 789.
27 Othman A G M, Abou El-Maaty M A, Serry M A. Ceramics International, 2001, 27(7), 801.
28 Wong L L, Bradt R C. American Ceramic Society Bulletin, 1990, 69, 1184.
29 Wong L L, Bradt R C. Journal of the American Ceramic Society, 1995, 78(6), 1611.
30 Coble R L. Journal of the American Ceramic Society, 1958, 41(2), 55.
31 Fu Z D, Zhao J, Dai Y Q, et al. Materials Reports, 2021, 35(1), 1077(in Chinese).
付振东, 赵健, 戴叶婧, 等. 材料导报, 2021, 35(1), 1077.
32 Zhou Q, Xu T X, Guo W L, et al. Bulletin of the Chinese Ceramic Society, 2004, 23(1),81(in Chinese).
邹强, 徐廷献, 郭文利, 等. 硅酸盐通报, 2004, 23(1), 81.
33 Lee J K, Choi H S, Lee S J. Journal of Ceramic Processing Research, 2012, 13(5), 646.
34 Yeprem H A. Journal of the European Ceramic Society, 2007, 27(2-3), 1651.
35 Wei Y W, Li N, Chen F Y. Journal of Iron and Steel Research-International, 2003, 10(4), 4.
36 Yu H, Han B Q, Zhang T, et al. Journal of Ceramics, 2017, 38(5), 700 (in Chinese).
余辉, 韩兵强, 张涛, 等. 陶瓷学报, 2017, 38(5), 700.
37 Xiao G Q, Yang X H. Refractories, 1998, 32(2), 77(in Chinese).
肖国庆, 杨兴华. 耐火材料, 1998, 32(2), 77.
38 Kim D K, Cho C H, Goo B J, et al. Journal of the Korean Ceramic Society, 2002, 39(6), 528.
39 Miskufova A, Havlik T, Bitschnau B, et al. Ceramics-Silikáty, 2015, 59(2), 115.
40 Shahraki A, Ghasemi-Kahrizsangi S, Nemati A. Materials Chemistry and Physics, 2017, 198, 354.
41 Ghosh A, Bhattacharya T K, Mukherjee B, et al. Ceramics International, 2001, 27(2), 201.
42 Kakali G, Parissakis G, Bouras D. Cement and Concrete Research, 1996, 26(10), 1473.
43 Hou G H. The chemistry of cement clinker formation containing high amount of C3S and the structure of doped C3S. Ph.D. Thesis, Nanjing University of Technology, China, 2006 (in Chinese).
侯贵华. 高C3S水泥熟料形成化学与掺杂C3S结构研究. 博士学位论文, 南京工业大学,2006.
44 Ghosh A, Bhattacharya T K, Maiti S, et al. Ceramics International, 2004, 30(8), 2117.
45 Wei J, Han B, Wang X, et al. Materials Chemistry and Physics, 2020, 254, 123413.
46 Cahoon H P, Johnson P D. Journal of the American Ceramic Society, 1951, 34(8), 230.
47 Yamamoto O. Transactions of the Materials Research Society of Japan, 1999, 24, 679.
48 Kahrizsangi S G, Dehsheikh H G. Boletín De La Sociedad Española De Cerámica Y Vidrio, 2017, 56(2), 83.
49 Rodrıguez J L, Rodrıguez M A, De A S, et al. Journal of the European Ceramic Society, 2001, 21(3), 343.
50 Chen M, Yamaguchi A. Journal of the Ceramic Society of Japan, 2002, 110(1288), 1058.
51 Chen M, Lu C, Yu J. Journal of the European Ceramic Society, 2007, 27(16), 4633.
52 Chen G, Li B, Zhang H, et al. International Journal of Applied Ceramic Technology, 2016, 13(6), 1173.
53 Usui K, Kaneyasu A, Yoshida A. Taikabutsu, 1995, 47, 114.
54 Ghasemi-Kahrizsangi S, Shahraki A, Farooghi M. Iranian Journal of Science and Technology & Transactions A: Science, 2018, 42(2), 567.
55 Ghoneim N M, Mandour M A, Serry M A. Ceramics International, 1989, 15(6), 357.
56 Ghoneim N M, Mandour M A, Serry M A. Ceramics International, 1990, 16(4), 215.
57 Bhattacharya T K, Ghosh A, Tripathi H S, et al. Bulletin of Materials Science, 2003, 26, 703.
58 Zhang H, Zhao H, Chen J, et al. Advances in Materials Science and Engineering, DOI: 10.1155/2013/673786
59 Kaneyasu A, Arita Y, Yoshida A, et al. Taikabutsu, 1998, 50, 475.
60 Chen M, Wang N, Yu J K, et al. Developments in Chemical Engineering and Mineral Processing, 2006, 14(3-4), 409.
61 Smith D E, Tien T Y, Van Vlack L H. Journal of the American Ceramic Society, 1969, 52(8), 459.
62 Yu Y W. A study on slag resistance and anti-hydration properties of calcia-rich magnesia-calcia refractories used for VOD. Ph.D. Thesis, Tianjin University, China, 2005.
于燕文. VOD炉用高钙镁钙材料抗渣侵蚀及抗水化性能研究. 博士学位论文, 天津大学, 2005.
63 Li X M, Yang J. Foundry Technology, 2007, 28(4), 468 (in Chinese).
李小明, 杨军. 铸造技术, 2007, 28(4), 468.
64 Yu H, Han B Q, Wei Y W, et al. Refractories, 2017, 51(2), 100 (in Chinese).
余辉, 韩兵强, 魏耀武, 等. 耐火材料, 2017, 51(2), 100.
65 Zhang H, Ding X F, Zhao H Z, et al. Journal of Synthetic Crystals, 2014, 43(1), 198 (in Chinese).
张寒, 丁雄风, 赵惠忠,等. 人工晶体学报, 2014, 43(1), 198.
66 Kacimi L, Simon-Masseron A, Ghomari A, et al. Comptes Rendus Chi-mie, 2006, 9(1), 154.
67 Oda Y, Takiuchi S, Yamoto I, et al. Taikabutsu, 1989, 41(7), 391.
68 Song H S, Kim C H. Cement and Concrete Research, 1990, 20(5), 815.
69 Maciel-Camacho A, Rodrfguez-Hernández H, Hills A W D, et al. ISIJ International, 1997, 37(5), 477.
70 Dheilly R M, Tudo J, Queneudec M. Journal of Materials Engineering and Performance, 1998, 7, 789.
71 Chen M, Ito S, Yamaguchi A. Journal of the Ceramic Society of Japan, 2002, 110(1282), 512.
72 Li Z H, Yin W, Kai X, et al. Fuel Processing Technology, 2016, 151, 101.
73 Chen S, Lu P, Chen G, et al. Journal of the American Ceramic Society, 2004, 87(12), 2164.
74 Wang H L, Cui Q Y, Xue Q H, et al. Refractories, 2010, 44(1), 67 (in Chinese).
王宏联, 崔庆阳, 薛群虎, 等. 耐火材料, 2010, 44(1), 67.
75 Gropyanov A V. Refractories and Industrial Ceramics, 2003, 44(2), 99.
76 Kaneyasu A, Yamamoto S, Yoshida A. Refractories(Tokyo), 1995, 47(12), 599.
77 Kaneyasu A, Yamamoto S, Yoshida A. Taikabutsu, 1996, 48, 474.
78 Ren K F, Yang J K, Wang C X, et al. Refractories, 2001, 35(3), 174 (in Chinese).
任魁锋, 杨景奎, 王诚训, 等. 耐火材料, 2001, 35(3), 174.
79 Li L. China Powder Science and Technology, 2006, 12(6), 31 (in Chinese).
李冷. 中国粉体技术, 2006, 12(6), 31.
[1] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[2] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[3] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[4] 赵永福, 唐敏, 姜峨, 银朝晖, 陈子瑞, 张根, 吴宗佩, 李杨. 氨型碱性水化学对690TT腐蚀特性的影响[J]. 材料导报, 2024, 38(7): 23030048-6.
[5] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[6] 王露, 涂拥军, 高富豪, 刘数华. 改性磷石膏对超硫酸盐水泥水化特性的影响[J]. 材料导报, 2024, 38(14): 22120115-6.
[7] 伍勇华, 匡玉峰, 易昂, 何娟, 原毅冰. 钢渣粉低液固比固碳工艺及固碳钢渣粉对水泥基材料性能的影响[J]. 材料导报, 2024, 38(13): 23060132-8.
[8] 陈永亮, 成亮, 陈铁军, 陈君宝, 张轶轲, 夏加庚. 砖混建筑垃圾制备蒸压加气混凝土性能及水化机理[J]. 材料导报, 2024, 38(12): 22060287-6.
[9] 梁梦标, 陈婷, 秦喆, 谢志翔, 徐彦乔, 温鹏, 林坚, 郭春显. 全无机铯铅卤钙钛矿纳米晶的表面包覆策略及白光LED应用研究进展[J]. 材料导报, 2024, 38(11): 22120172-11.
[10] 钱凡, 李红霞, 郭海荣, 于建宾, 李坚强, 马渭奎, 马北越, 杨文刚. 耐火材料的抗碱侵蚀性研究进展[J]. 材料导报, 2024, 38(11): 22100110-12.
[11] 黄正峰, 欧忠文, 罗伟, 王飞, 王廷福. 聚醚型减缩剂延缓水泥水化的机理分析[J]. 材料导报, 2024, 38(10): 22060030-5.
[12] 李天宇, 柴肇云, 杨泽前, 辛子朋, 孙浩程, 闫珂. 高岭石表面水化机理及电场弱化其吸附性能的分子模拟[J]. 材料导报, 2024, 38(1): 22050283-7.
[13] 沈燕, 朱航宇, 龚泳帆, 何强. 碱对硫铝酸盐水泥-粉煤灰体系水化硬化的影响[J]. 材料导报, 2023, 37(S1): 23050143-6.
[14] 庞超明, 唐志远, 杨志远, 黄鹏. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 21110247-11.
[15] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed