Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 23120044-6    https://doi.org/10.11896/cldb.23120044
  路域废弃物资源化及高值化利用 |
再生微粉-电石渣制备硅酸盐水泥熟料及其水化性能研究
侯圣举1, 李树国1, 何超2, 陈扬1, 但建明3, 周阳4, 李相国1,3, 吕阳1,*
1 武汉理工大学硅酸盐建筑材料国家重点实验室,武汉 430070
2 华新环境工程有限公司,武汉 430075
3 石河子大学化学化工学院,化工绿色过程省部共建国家重点实验室培育基地,新疆 石河子 832003
4 石河子大学水利建筑工程学院,新疆 石河子 832000
Study on the Preparation of Clinker from Recycled Concrete Powder and Calcium Carbide Slag and Its Hydration Properties
HOU Shengju1, LI Shuguo1, HE Chao2, CHEN Yang1, DAN Jianming3, ZHOU Yang4, LI Xiangguo1,3, LYU Yang1,*
1 State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
2 Huaxin Environment Engineering Co., Ltd., Wuhan 430075, China
3 State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
4 College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, China
下载:  全 文 ( PDF ) ( 3056KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以再生微粉(RCP)和电石渣(CCS)等典型固废作为原材料,开展了固废基低碳水泥熟料制备技术研究。试验分析了煅烧温度(1 300 ℃、1 350 ℃、1 400 ℃和1 450 ℃)以及CCS和RCP含量对熟料煅烧和矿相组成的影响,并研究了1 400 ℃下制备的水泥熟料的水化特性与力学性能。结果表明,RCP的加入可以降低水泥熟料的烧成温度,适量的RCP(60%)作为水泥生料掺入会提高熟料的力学性能,有利于水泥的早期水化。这些工作有助于推进建筑垃圾的资源化利用,为水泥生产中钙硅质原料提供了替代方案。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯圣举
李树国
何超
陈扬
但建明
周阳
李相国
吕阳
关键词:  再生微粉  电石渣  硅酸盐水泥  煅烧温度  水化特性    
Abstract: This research focuses on low-carbon cement preparation technology by using typical solid wastes such as recycled concrete powder(RCP) and calcium calcium carbide slag(CCS) as raw materials. The effects of sintering temperatures(1 300 ℃, 1 350 ℃, 1 400 ℃ and 1 450 ℃) and the contents of CCS and RCP on clinker calcination and mineral phase composition are analyzed, meanwhile the hydration characteristics and mechanical properties of solid waste-based cement at 1 400 ℃ are studied. Results demonstrated that an appropriate amount of RCP could lower the optimal clinker sintering temperature, enhancing both the mechanical properties and the cement hydration process. Specifically, when the RCP content reached 60wt%, the solid waste-based cement exhibited superior mechanical properties, achieving a 28-day compressive strength of 110.5 MPa. This investigation contributes to the advancement of resource utilization for RCP and offers guidance for substituting calcium-silica raw materials with solid waste in cement production.
Key words:  recycled concrete powder    calcium carbide slag    Portland cement    calcination temperature    hydration property
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  TQ172  
基金资助: 兵团重点科技攻关计划(2023AB013-03);八师石河子市科技计划项目(2022GY01)
通讯作者:  *吕阳,武汉理工大学材料科学与工程学院研究员、硕士研究生导师。2017年取得比利时根特大学土木工程博士学位,2018至今在武汉理工大学硅酸盐建筑材料国家重点实验室工作,主要从事低碳胶凝材料、功能水泥基材料、高性能水泥基材料等方面的研究工作。在Cement and Concrete Research、Construction and Building Materials、Journal of Building Engineering等期刊发表论文30余篇。yang.lv@whut.edu.cn   
作者简介:  侯圣举,2021年6月于山东科技大学获得工学学士学位。现为武汉理工大学材料科学与工程学院硕士研究生,在吕阳研究员的指导下进行研究。主要研究领域为水泥、工业固废等。
引用本文:    
侯圣举, 李树国, 何超, 陈扬, 但建明, 周阳, 李相国, 吕阳. 再生微粉-电石渣制备硅酸盐水泥熟料及其水化性能研究[J]. 材料导报, 2024, 38(22): 23120044-6.
HOU Shengju, LI Shuguo, HE Chao, CHEN Yang, DAN Jianming, ZHOU Yang, LI Xiangguo, LYU Yang. Study on the Preparation of Clinker from Recycled Concrete Powder and Calcium Carbide Slag and Its Hydration Properties. Materials Reports, 2024, 38(22): 23120044-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23120044  或          http://www.mater-rep.com/CN/Y2024/V38/I22/23120044
1 Oliveira T C F, Dezen B G S, Possan E. Journal of Cleaner Production, 2020, 273, 123126.
2 Mohammed A, Rafiq S, Mahmood W, et al. Construction and Building Materials, 2020, 257, 119590.
3 Liu S, Rong P, Zhang C, et al. Cement and Concrete Composites, 2023, 141, 105151.
4 Mohamad N, Muthusamy K, Embong R, et al. Materials Today: Proceedings, 2022, 48, 741.
5 Schneider M, Romer M, Tschudin M, et al. Cement and Concrete Research, 2011, 41(7), 642.
6 Wang Q, Yao G, Zhu X, et al. Advances in Materials Science and Engineering, 2019, 2019, 1.
7 Her S, Park T, Zalnezhad E, et al. Journal of Cleaner Production, 2021, 278, 123987.
8 Ashraf M S, Ghouleh Z, Shao Y. Resources, Conservation and Recycling, 2019, 149, 332.
9 Saikia N, Kato S, Kojima T. Waste Manag, 2007, 27(9), 1178.
10 Deng X, Li J, Lu Z, et al. Construction and Building Materials, 2023, 393, 132108.
11 Imjai T, Garcia R, Kim B, et al. Structures, 2023, 51, 1071.
12 Ashraf M J, Idrees M, Akbar A. Journal of Building Engineering, 2023, 66。 105892.
13 Chen B, Peng L, Zhong H, et al. Construction and Building Materials, 2023, 371,130825.
14 Silva C M M D A E, Perrira M M L, Capuzzo V M S, et al. Case Studies in Construction Materials, 2023, 18, e01938.
15 Tang B, Fan M, Yang Z, et al. Construction and Building Materials, 2023, 371, 130797.
16 Lu Z, Tan Q, Lin J, et al. Construction and Building Materials, 2022, 341, 127813.
17 Liu X, Liu L, Lyu K, et al. Journal of Building Engineering, 2022, 50, 104.
18 Li Z, Bian Y, Zhao J, et al. Journal of Building Engineering, 2022, 62, 105326.
19 Xiao J, Ma Z, Sui T, et al. Journal of Cleaner Production, 2018, 188, 720.
20 Li S, Gao J, Li Q, et al. Construction and Building Materials, 2021, 267, 120976.
21 Liu Q, Li B, Xiao J, et al. Construction and Building Materials, 2020, 238, 117721.
22 Kim J, Jang H. Journal of Cleaner Production, 2022, 343, 130977.
23 Zhao G, Zhu Z, Ren G, et al. Construction and Building Materials, 2023, 389, 131626.
24 Schoon J, De Buysser K, Van Driessche I, et al. Cement and Concrete Composites, 2015, 58, 70.
25 Oh D, Noguchi T, Kitagaki R, et al. Renewable and Sustainable Energy Reviews, 2021, 135, 110147.
26 Shi Y, Zhao Q, Xue C, et al. Cement and Concrete Composites, 2023, 139, 104999.
27 Chen P, Wang C, Wang Y, et al. Construction and Building Materials, 2023, 399, 132541.
28 Wang Q, Li C, Zhou W, et al. Journal of Building Engineering, 2022, 60, 105159.
29 Wang Y, Zhang M, Cao Y H, et al. Cement, 2022(7), 10(in Chinese).
王勇, 张萌, 曹元辉等. 水泥, 2022(7), 10.
30 Wei J J. Research oneco-cement produced from waste concrete. Master's Thesis, Dalian University of Technology, China,2011(in Chinese).
魏璟璟. 全组分废弃混凝土制备再生水泥的试验研究. 硕士学位论文, 大连理工大学, 2011.
31 Zhu S F. Effect of compound doping on recycled cement clinker production and property. Master's Thesis, Dalian University of Technology, China, 2016(in Chinese).
朱苏峰. 复合掺杂对再生水泥熟料烧成及性能的影响. 硕士学位论文, 大连理工大学, 2016.
32 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Portland cement clinker, GB/T 21372-2008, 2008(in Chinese).
中华人民共和国国家质量监督检验检疫总局. 硅酸盐水泥熟料, GB/T 21372-2008, 2008.
33 Ma X W, Chen H X, Wang P M. Cement and Concrete Research, 2010, 40(12), 1681.
34 Xing Z B. Study on the crystal structures and structural evolution of tricalcium silicate. Master's Thesis, Nanjing University, China, 2013(in Chinese).
邢智彪. 硅酸三钙晶体结构及其演化机理研究. 硕士学位论文, 南京大学, 2013.
35 Bullard J W, Jennings H M, Livingston R A, et al. Cement and Concrete Research, 2011, 41(12), 1208.
36 TheobaldH M, Plank J. Cement and Concrete Composites, 2022, 125, 104278.
37 Wang Q, Lai J, Claesen L, et al. Neural Netw, 2020, 130, 1.
38 Wang Q, Li J, Yao G, et al. Construction and Building Materials, 2020, 241, 117994.
[1] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[2] 徐俊, 康爱红, 吴正光, 龚泳帆, 寇长江, 吴帮伟, 张垚, 肖鹏. 高性能再生微粉基地聚合物注浆料的活化制备及性能研究[J]. 材料导报, 2024, 38(22): 24060235-6.
[3] 龙武剑, 钟安楠, 何闯. 硅酸盐水泥氯离子固化机理及影响因素研究进展[J]. 材料导报, 2024, 38(21): 23080022-11.
[4] 郭维超, 赵庆新, 邱永祥, 石雨轩, 王帅. 碱渣-电石渣激发混凝土的基本力学性能与应力-应变关系[J]. 材料导报, 2024, 38(17): 22070247-8.
[5] 梁宝瑞, 王长龙, 平浩岩, 刘治兵, 马锦涛, 郑永超, 荆牮霖, 齐洋, 翟玉新, 刘枫. 铅锌尾矿/电石渣基加气混凝土的组成及结构[J]. 材料导报, 2024, 38(14): 23040266-7.
[6] 马梦阳, 贺行洋, 熊光, 李欣懋, 龙勇, 王福龙. 二水磷石膏-电石渣-镍铁渣三元胶凝体系的性能与微观结构[J]. 材料导报, 2024, 38(13): 22080048-5.
[7] 马昆林, 孟维琦, 申景涛, 胡明文, 王晓杰, 龙广成, 曾晓辉. 再生微粉性能激活研究及应用进展[J]. 材料导报, 2024, 38(10): 22100042-13.
[8] 李贞, 刘加平, 乔敏, 于诚, 谢惟肖, 陈俊松. 基于减水剂吸附行为的再生微粉-水泥浆体黏度调控机理研究[J]. 材料导报, 2023, 37(8): 21090090-7.
[9] 宫经伟, 谢刚川, 秦灿, 晋强. 基于电阻率和ζ-电位法的低热硅酸盐水泥早期水化特性[J]. 材料导报, 2023, 37(4): 21050113-9.
[10] 万小梅, 车雪萍, 朱亚光, 于琦, 江璐璐. 再生混凝土微粉在碱激发胶材体系中的作用效应研究[J]. 材料导报, 2023, 37(19): 22020043-7.
[11] 林一柯, 何廷树, 达永琪. 自磨改性对再生粗骨料及再生混凝土性能的影响[J]. 材料导报, 2023, 37(16): 22020144-6.
[12] 肖建庄, 叶涛华, 隋同波, 潘智生. 废弃混凝土再生微粉的基本问题及应用[J]. 材料导报, 2023, 37(10): 22120116-10.
[13] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[14] 周万良, 邓欢. 基于NaOH激发矿渣和硅酸盐水泥的功能梯度混凝土的抗氯离子渗透性能[J]. 材料导报, 2022, 36(Z1): 21100082-4.
[15] 王长龙, 赵高飞, 王永波, 张苏花, 郑永超, 霍泽坤, 王绍熙, 任真真, 邹佳一. 水库底泥和电石渣高温改性钢渣的研究[J]. 材料导报, 2022, 36(9): 21040178-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed